Ellis Hoffland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends in Ecology and Evolution, 2001, 16, 248-254.	8.7	627
2	Solubilization of rock phosphate by rape. Plant and Soil, 1989, 113, 161-165.	3.7	468
3	Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21, 1715-1726.	9.5	286
4	The role of fungi in weathering. Frontiers in Ecology and the Environment, 2004, 2, 258-264.	4.0	271
5	Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6, 653-660.	9.3	259
6	Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 2014, 102, 1163-1170.	4.0	220
7	Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons. Applied and Environmental Microbiology, 2003, 69, 327-333.	3.1	206
8	Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant and Soil, 2008, 303, 35-47.	3.7	179
9	Organic Anion Exudation by Lowland Rice (Oryza sativa L.) at Zinc and Phosphorus Deficiency. Plant and Soil, 2006, 283, 155-162.	3.7	139
10	Eco-functionality of organic matter in soils. Plant and Soil, 2020, 455, 1-22.	3.7	116
11	Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology and Biochemistry, 2011, 43, 997-1005.	8.8	104
12	Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytologist, 2006, 170, 153-163.	7.3	99
13	Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 2020, 113, 125987.	4.1	88
14	From Flooded to Aerobic Conditions in Rice Cultivation: Consequences for Zinc Uptake. Plant and Soil, 2006, 280, 41-47.	3.7	84
15	Fungal biomass in pastures increases with age and reduced N input. Soil Biology and Biochemistry, 2007, 39, 1620-1630.	8.8	83
16	Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil, 2007, 290, 283-291.	3.7	83
17	Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agronomy for Sustainable Development, 2012, 32, 465-478.	5.3	82
18	Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytologist, 2006, 171, 805-814.	7.3	72

Ellis Hoffland

#	Article	IF	CITATIONS
19	Contribution of mineral tunneling to total feldspar weathering. Geoderma, 2005, 125, 59-69.	5.1	66
20	Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil, 2015, 391, 399-411.	3.7	64
21	Increasing Feldspar Tunneling by Fungi across a North Sweden Podzol Chronosequence. Ecosystems, 2002, 5, 11-22.	3.4	62
22	Fertilizer response and nitrogen use efficiency in African smallholder maize farms. Nutrient Cycling in Agroecosystems, 2019, 113, 1-19.	2.2	60
23	ls litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biology and Biochemistry, 2020, 145, 107791.	8.8	57
24	Dynamics of soil dissolved organic carbon pools reveal both hydrophobic and hydrophilic compounds sustain microbial respiration. Soil Biology and Biochemistry, 2014, 79, 109-116.	8.8	55
25	Tolerance to Zinc Deficiency in Rice Correlates with Zinc Uptake and Translocation. Plant and Soil, 2005, 278, 253-261.	3.7	52
26	Feldspar Tunneling by Fungi along Natural Productivity Gradients. Ecosystems, 2003, 6, 739-746.	3.4	51
27	Multi-surface Modeling To Predict Free Zinc Ion Concentrations in Low-Zinc Soils. Environmental Science & Technology, 2014, 48, 5700-5708.	10.0	50
28	Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biology and Biochemistry, 2018, 117, 164-174.	8.8	50
29	Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize. Frontiers in Plant Science, 2017, 8, 684.	3.6	44
30	Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil. Soil Biology and Biochemistry, 2015, 80, 341-348.	8.8	42
31	Release of isothiocyanates does not explain the effects of biofumigation with Indian mustard cultivars on nematode assemblages. Soil Biology and Biochemistry, 2014, 68, 200-207.	8.8	41
32	Malate Exudation by Six Aerobic Rice Genotypes Varying in Zinc Uptake Efficiency. Journal of Environmental Quality, 2009, 38, 2315-2321.	2.0	38
33	Organic inputs to reduce nitrogen export via leaching and runoff: A global meta-analysis. Environmental Pollution, 2021, 291, 118176.	7.5	35
34	Effect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicity. Forest Ecology and Management, 2005, 215, 352-360.	3.2	31
35	Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation. Plant and Soil, 2012, 361, 165-175.	3.7	28
36	InÂsitu sampling of small volumes of soil solution using modified micro-suction cups. Plant and Soil, 2007, 292, 161-169.	3.7	21

Ellis Hoffland

#	Article	IF	CITATIONS
37	Testing for complementarity in phosphorus resource use by mixtures of crop species. Plant and Soil, 2019, 439, 163-177.	3.7	20
38	Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57, 2203-2211.	4.0	20
39	Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: yield gains and possible fertilizer savings in relation to phosphorus application. Plant and Soil, 2020, 450, 613-624.	3.7	17
40	Hatching of Globodera pallida is inhibited by 2-propenyl isothiocyanate in vitro but not by incorporation of Brassica juncea tissue in soil. Applied Soil Ecology, 2014, 84, 6-11.	4.3	13
41	Rapid decomposition of traditionally produced biochar in an Oxisol under savannah in Northeastern Brazil. Geoderma Regional, 2015, 6, 1-6.	2.1	12
42	Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists. Mycorrhiza, 2019, 29, 251-261.	2.8	11
43	Common mycorrhizal networks asymmetrically improve chickpea N and P acquisition and cause overyielding by a millet/chickpea mixture. Plant and Soil, 2022, 472, 279-293.	3.7	7
44	Complementarity and facilitation with respect to P acquisition do not drive overyielding by intercropping. Field Crops Research, 2021, 265, 108127.	5.1	6
45	A conceptual framework and an empirical test of complementarity and facilitation with respect to phosphorus uptake by plant species mixtures. Pedosphere, 2022, 32, 317-329.	4.0	5
46	Transfer functions for phosphorus and potassium soil tests and implications for the QUEFTS model. Geoderma, 2022, 406, 115458.	5.1	3
47	How Does Aerobic Rice Take Up Zinc from Low Zinc Soil? Mechanisms, Trade-Offs, and Implications for Breeding. , 2008, , 153-170.		1