
Paul B Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742403/publications.pdf Version: 2024-02-01

DALLI RLADSEN

#	Article	IF	CITATIONS
1	Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. Plant Cell, 2021, 33, 1361-1380.	6.6	26
2	Aluminum or Low pH – Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Frontiers in Genetics, 2021, 12, 675260.	2.3	21
3	Al-Tolerant Barley Mutant hvatr.g Shows the ATR-Regulated DNA Damage Response to Maleic Acid Hydrazide. International Journal of Molecular Sciences, 2020, 21, 8500.	4.1	5
4	A multiâ€level response to <scp>DNA</scp> damage induced by aluminium. Plant Journal, 2019, 98, 479-491.	5.7	36
5	<i>SUV2</i> , which encodes an ATRâ€related cell cycle checkpoint and putative plant ATRIP, is required for aluminiumâ€dependent root growth inhibition in Arabidopsis. Plant, Cell and Environment, 2017, 40, 1849-1860.	5.7	23
6	Modification of DNA Checkpoints to Confer Aluminum Tolerance. Trends in Plant Science, 2017, 22, 102-105.	8.8	47
7	Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response. Plant Cell, 2015, 27, 2501-2515.	6.6	102
8	Dominant gainâ€ofâ€function mutations in transmembrane domain <scp>III</scp> of <scp>ERS</scp> 1 and <scp>ETR</scp> 1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis. New Phytologist, 2015, 208, 442-455.	7.3	11
9	Mechanisms of ethylene biosynthesis and response in plants. Essays in Biochemistry, 2015, 58, 61-70.	4.7	41
10	Mutational loss of Arabidopsis SLOW WALKER2 results in reduced endogenous spermine concomitant with increased aluminum sensitivity. Functional Plant Biology, 2013, 40, 67.	2.1	10
11	A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. Journal of Experimental Botany, 2012, 63, 2231-2241.	4.8	28
12	The <i>Arabidopsis</i> Cell Cycle Checkpoint Regulators TANMEI/ALT2 and ATR Mediate the Active Process of Aluminum-Dependent Root Growth Inhibition. Plant Cell, 2012, 24, 608-621.	6.6	75
13	FERONIA Is a Key Modulator of Brassinosteroid and Ethylene Responsiveness in Arabidopsis Hypocotyls. Molecular Plant, 2010, 3, 626-640.	8.3	176
14	The <i>eer5</i> mutation, which affects a novel proteasomeâ€related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethyleneâ€signaling pathway in Arabidopsis. Plant Journal, 2008, 55, 467-477.	5.7	45
15	Aluminum-Dependent Root-Growth Inhibition in Arabidopsis Results from AtATR-Regulated Cell-Cycle Arrest. Current Biology, 2008, 18, 1495-1500.	3.9	88
16	Phenotypic Analysis of Arabidopsis Mutants: Ethylene Hormone Response. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4966-pdb.prot4966.	0.3	0
17	PA, a stress-induced short cut to switch-on ethylene signalling by switching-off CTR1?. Plant Signaling and Behavior, 2008, 3, 681-683.	2.4	17
18	Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. Journal of Experimental Botany, 2007, 58, 3905-3914.	4.8	132

PAUL B LARSEN

#	Article	IF	CITATIONS
19	Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. Journal of Experimental Botany, 2007, 58, 2627-2639.	4.8	42
20	Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. Journal of Experimental Botany, 2007, 58, 2237-2248.	4.8	51
21	Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta, 2007, 225, 1447-1458.	3.2	191
22	ldentification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1. Journal of Experimental Botany, 2006, 57, 943-951.	4.8	30
23	<i>ALS3</i> encodes a phloemâ€localized ABC transporterâ€like protein that is required for aluminum tolerance in Arabidopsis. Plant Journal, 2005, 41, 353-363.	5.7	270
24	A recessive mutation in the RUB1-conjugating enzyme,RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction ofbasic chitinaseandPDF1.2inArabidopsis. Plant Journal, 2004, 38, 626-638.	5.7	58
25	Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant Journal, 2003, 34, 709-718.	5.7	95
26	Loss-of-Function Mutations in the Ethylene ReceptorETR1 Cause Enhanced Sensitivity and Exaggerated Response to Ethylene in Arabidopsis. Plant Physiology, 2002, 129, 1557-1567.	4.8	188
27	The Arabidopsis eer1 Mutant Has Enhanced Ethylene Responses in the Hypocotyl and Stem. Plant Physiology, 2001, 125, 1061-1073.	4.8	99
28	Effect of aluminum on cytoplasmic Ca 2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta, 1998, 206, 378-387.	3.2	123
29	Aluminum Resistance in the Arabidopsis Mutantalr-104 Is Caused by an Aluminum-Induced Increase in Rhizosphere pH1. Plant Physiology, 1998, 117, 19-27.	4.8	227
30	Aluminum-Resistant Arabidopsis Mutants That Exhibit Altered Patterns of Aluminum Accumulation and Organic Acid Release from Roots1. Plant Physiology, 1998, 117, 9-17.	4.8	175
31	Title is missing!. Plant and Soil, 1997, 192, 3-7.	3.7	7
32	Expression of Ethylene Biosynthetic Pathway Transcripts in Senescing Carnation Flowers. Plant Physiology, 1992, 99, 526-532.	4.8	222
33	Unraveling the Mechanisms Underlying Aluminum-Dependent Root Growth Inhibition. , 0, , 113-141.		1