
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances and applications of nanophotonic biosensors. Nature Nanotechnology, 2022, 17, 5-16.	15.6	308
2	CRABP1-CaMKII-Agrn regulates the maintenance of neuromuscular junction in spinal motor neuron. Cell Death and Differentiation, 2022, 29, 1744-1756.	5.0	8
3	Open-channel microfluidics via resonant wireless power transfer. Nature Communications, 2022, 13, 1869.	5.8	8
4	A field-deployable diagnostic assay for the visual detection of misfolded prions. Scientific Reports, 2022, 12, .	1.6	4
5	Nanogap dielectrophoresis combined with buffer exchange for detecting protein binding to trapped bioparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125829.	2.3	3
6	Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nature Photonics, 2021, 15, 125-130.	15.6	78
7	Escalated Photocurrent with Excitation Energy in Dual-Gated MoTe ₂ . Nano Letters, 2021, 21, 1976-1981.	4.5	8
8	Ultraflat Sub-10 Nanometer Gap Electrodes for Two-Dimensional Optoelectronic Devices. ACS Nano, 2021, 15, 5276-5283.	7.3	15
9	Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nature Communications, 2021, 12, 938.	5.8	33
10	Launching graphene surface plasmon waves with vanishingly small periodic grating structures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 556.	0.8	2
11	Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS Nano, 2021, 15, 6669-6677.	7.3	17
12	Nanoâ€Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. ChemPhysChem, 2021, 22, 1409-1420.	1.0	12
13	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	5.8	88
14	Nanoâ€Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. ChemPhysChem, 2021, 22, 1408-1408.	1.0	2
15	Accessing the Exceptional Points in a Graphene Plasmon–Vibrational Mode Coupled System. ACS Photonics, 2021, 8, 3241-3248.	3.2	10
16	Sensitivity of resonance frequency in the detection of thin layer using nano-slit structures. IMA Journal of Applied Mathematics, 2021, 86, 146-164.	0.8	0
17	Electrotunable Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. ACS Nano, 2020, 14, 328-336.	7.3	32
18	Image polaritons in boron nitride for extreme polariton confinement with low losses. Nature Communications, 2020, 11, 3649.	5.8	56

#	Article	lF	CITATIONS
19	Mode-Matching Enhancement of Second-Harmonic Generation with Plasmonic Nanopatch Antennas. ACS Photonics, 2020, 7, 3333-3340.	3.2	29
20	Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 2020, 4, .	3.9	528
21	Impact of Surface Roughness in Nanogap Plasmonic Systems. ACS Photonics, 2020, 7, 908-913.	3.2	25
22	Plasmonic Gas Sensing with Graphene Nanoribbons. Physical Review Applied, 2020, 13, .	1.5	25
23	Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Optics Express, 2020, 28, 2020.	1.7	30
24	Terahertz and infrared nonlocality and field saturation in extreme-scale nanoslits. Optics Express, 2020, 28, 8701.	1.7	4
25	Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosensors and Bioelectronics, 2019, 142, 111568.	5.3	7
26	Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures. Nature Communications, 2019, 10, 4476.	5.8	26
27	Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nature Nanotechnology, 2019, 14, 313-319.	15.6	210
28	Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry. ACS Sensors, 2019, 4, 3265-3274.	4.0	44
29	Nanoscale tweezers for single-cell biopsies. Nature Nanotechnology, 2019, 14, 80-88.	15.6	147
30	Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction. ACS Nano, 2018, 12, 2780-2788.	7.3	35
31	High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. Nano Letters, 2018, 18, 1930-1936.	4.5	88
32	Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing. Physical Review Applied, 2018, 9, .	1.5	93
33	Anisotropic Acoustic Plasmons in Black Phosphorus. ACS Photonics, 2018, 5, 2208-2216.	3.2	54
34	A hybridizable discontinuous Galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures. Journal of Computational Physics, 2018, 355, 548-565.	1.9	25
35	Lipid Membranes: Curvature Elasticityâ€Driven Leaflet Asymmetry and Interleaflet Raft Coupling in Supported Membranes (Adv. Mater. Interfaces 23/2018). Advanced Materials Interfaces, 2018, 5, 1870117.	1.9	0
36	Performance metrics and enabling technologies for nanoplasmonic biosensors. Nature Communications, 2018, 9, 5263.	5.8	70

#	Article	IF	CITATIONS
37	Curvature Elasticityâ€Driven Leaflet Asymmetry and Interleaflet Raft Coupling in Supported Membranes. Advanced Materials Interfaces, 2018, 5, 1801290.	1.9	4
38	A Tunable Nanoplasmonic Mirror at an Electrochemical Interface. ACS Photonics, 2018, 5, 4604-4616.	3.2	23
39	Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy. Optics Express, 2018, 26, 23540.	1.7	15
40	Surface Plasmon Resonance Sensing on Naturally Derived Membranes: A Remyelination-Promoting Human Antibody Binds Myelin with Extraordinary Affinity. Analytical Chemistry, 2018, 90, 12567-12573.	3.2	5
41	Mobility Anisotropy in Black Phosphorus MOSFETs With HfO ₂ Gate Dielectrics. IEEE Transactions on Electron Devices, 2018, 65, 4093-4101.	1.6	18
42	Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy. Nano Letters, 2018, 18, 7601-7608.	4.5	56
43	Surface Plasmon Resonance Study of the Binding of PEO–PPO–PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers. Langmuir, 2018, 34, 6703-6712.	1.6	18
44	Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. Nano Letters, 2018, 18, 3637-3642.	4.5	134
45	Fast vertical mode expansion method for the simulation of extraordinary terahertz field enhancement in an annular nanogap. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 30.	0.9	3
46	Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles. Nano Letters, 2018, 18, 5946-5953.	4.5	39
47	Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 2018, 9, 2160.	5.8	176
48	Enhanced Plasmonic Detection with Dielectrophoretic Concentration. Integrated Analytical Systems, 2018, , 123-146.	0.4	0
49	Surface-Enhanced Infrared Absorption Spectroscopy via Coaxial Zero-Mode Resonators with Sub-10-nm Gaps. , 2018, , .		0
50	Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Letters, 2017, 17, 985-991.	4.5	111
51	Influence of Silver Film Quality on the Threshold of Plasmonic Nanowire Lasers. Advanced Optical Materials, 2017, 5, 1600856.	3.6	22
52	High-Performance Black Phosphorus MOSFETs Using Crystal Orientation Control and Contact Engineering. IEEE Electron Device Letters, 2017, 38, 685-688.	2.2	20
53	Cyclical Thinning of Black Phosphorus with High Spatial Resolution for Heterostructure Devices. ACS Applied Materials & Interfaces, 2017, 9, 12654-12662.	4.0	17
54	Three-Dimensional Anisotropic Metamaterials as Triaxial Optical Inclinometers. Scientific Reports, 2017, 7, 2680.	1.6	11

#	Article	IF	CITATIONS
55	Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nature Communications, 2017, 8, 1867.	5.8	69
56	Mid-Infrared Plasmonic Coaxial Nanorings for Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. , 2017, , .		0
57	Mid-Infrared Nanoplasmonics for Label-free Real-time Biosensing of Proteins and Lipid Membranes. , 2017, , .		0
58	3D Microelectronics: Selfâ€Assembled Multifunctional 3D Microdevices (Adv. Electron. Mater. 6/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
59	Plasmonic Nanohole Sensor for Capturing Single Virus‣ike Particles toward Virucidal Drug Evaluation. Small, 2016, 12, 1159-1166.	5.2	57
60	Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes. Scientific Reports, 2016, 6, 26823.	1.6	14
61	Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography. Applied Physics Letters, 2016, 108, 213106.	1.5	4
62	Gap Plasmon Enhanced Metasurface Third-Harmonic Generation in Transmission Geometry. ACS Photonics, 2016, 3, 1461-1467.	3.2	31
63	Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons. ACS Applied Materials & Interfaces, 2016, 8, 13624-13629.	4.0	6
64	Fundamental Limits on the Subthreshold Slope in Schottky Source/Drain Black Phosphorus Field-Effect Transistors. ACS Nano, 2016, 10, 3791-3800.	7.3	65
65	Launching surface plasmon waves via vanishingly small periodic gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 276.	0.8	17
66	On-Demand Surface- and Tip-Enhanced Raman Spectroscopy Using Dielectrophoretic Trapping and Nanopore Sensing. ACS Photonics, 2016, 3, 1036-1044.	3.2	38
67	Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes. Nano Letters, 2016, 16, 6317-6324.	4.5	57
68	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	4.5	54
69	Multimodal Photodiode and Phototransistor Device Based on Two-Dimensional Materials. ACS Nano, 2016, 10, 10500-10506.	7.3	16
70	Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy. ACS Photonics, 2016, 3, 1202-1207.	3.2	6
71	Selfâ€Assembled Multifunctional 3D Microdevices. Advanced Electronic Materials, 2016, 2, 1500459.	2.6	20
72	Dielectrophoresis-Assisted Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids. Analytical Chemistry, 2016, 88, 1704-1710.	3.2	12

#	Article	IF	CITATIONS
73	Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nature Communications, 2016, 7, 10217.	5.8	224
74	Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. Nano Letters, 2016, 16, 1502-1508.	4.5	152
75	High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography. Nano Letters, 2016, 16, 2040-2046.	4.5	84
76	Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing. ACS Applied Materials & Interfaces, 2016, 8, 9319-9326.	4.0	18
77	Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis. Expert Opinion on Biological Therapy, 2016, 16, 827-839.	1.4	21
78	Terahertz Waves: Perfect Extinction of Terahertz Waves in Monolayer Graphene over 2-nm-Wide Metallic Apertures (Advanced Optical Materials 5/2015). Advanced Optical Materials, 2015, 3, 714-714.	3.6	1
79	Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing. Analyst, The, 2015, 140, 4828-4834.	1.7	28
80	Lipid Membrane Deformation Accompanied by Disk-to-Ring Shape Transition of Cholesterol-Rich Domains. Journal of the American Chemical Society, 2015, 137, 8692-8695.	6.6	18
81	A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2015, 8, 831-42.	1.2	38
82	Nanohole Array-Directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis. Analytical Chemistry, 2015, 87, 11973-11977.	3.2	13
83	Human-derived natural antibodies: biomarkers and potential therapeutics. Future Neurology, 2015, 10, 25-39.	0.9	16
84	Nanogap-Enhanced Terahertz Sensing of 1 nm Thick (λ/10 ⁶) Dielectric Films. ACS Photonics, 2015, 2, 417-424.	3.2	85
85	Polarization interferometry for real-time spectroscopic plasmonic sensing. Nanoscale, 2015, 7, 4226-4233.	2.8	14
86	Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO ₂ and its application for biosensing. Nanoscale, 2015, 7, 3565-3571.	2.8	13
87	Perfect Extinction of Terahertz Waves in Monolayer Graphene over 2â€nmâ€Wide Metallic Apertures. Advanced Optical Materials, 2015, 3, 667-673.	3.6	28
88	Applications of plasmonics: general discussion. Faraday Discussions, 2015, 178, 435-466.	1.6	17
89	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
90	High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films. Faraday Discussions, 2015, 178, 195-201.	1.6	16

#	Article	IF	CITATIONS
91	Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates. ACS Nano, 2015, 9, 10647-10654.	7.3	79
92	Naturally Occurring Monoclonal Antibodies and Their Therapeutic Potential for Neurologic Diseases. JAMA Neurology, 2015, 72, 1346.	4.5	16
93	Low-temperature enhancement of plasmonic performance in silver films. Optical Materials Express, 2015, 5, 1147.	1.6	35
94	Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale, 2015, 7, 15080-15085.	2.8	25
95	Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes. ACS Photonics, 2015, 2, 256-262.	3.2	94
96	Nanogap-Enhanced Infrared Spectroscopy with Template-Stripped Wafer-Scale Arrays of Buried Plasmonic Cavities. Nano Letters, 2015, 15, 107-113.	4.5	135
97	Fast high-order perturbation of surfaces methods for simulation of multilayer plasmonic devices and metamaterials. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1820.	0.8	12
98	Field enhancement and saturation of millimeter waves inside a metallic nanogap. Optics Express, 2014, 22, 14402.	1.7	13
99	Oxidation Sharpening, Template Stripping, and Passivation of Ultraâ€6harp Metallic Pyramids and Wedges. Small, 2014, 10, 680-684.	5.2	14
100	Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers. Applied Physics Letters, 2014, 104, 023109.	1.5	48
101	Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS. Chemistry of Materials, 2014, 26, 6523-6530.	3.2	56
102	Spatial Coherence in Near-Field Raman Scattering. Physical Review Letters, 2014, 113, 186101.	2.9	63
103	Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Review of Neurotherapeutics, 2014, 14, 449-463.	1.4	22
104	Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators. ACS Photonics, 2014, 1, 1212-1217.	3.2	112
105	Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays. Nano Letters, 2014, 14, 2006-2012.	4.5	149
106	Rapid and Sensitive in Situ SERS Detection Using Dielectrophoresis. Chemistry of Materials, 2014, 26, 2445-2452.	3.2	42
107	Individual Template-Stripped Conductive Gold Pyramids for Tip-Enhanced Dielectrophoresis. ACS Photonics, 2014, 1, 464-470.	3.2	30
108	Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nature Communications, 2014, 5, 4507.	5.8	41

#	Article	IF	CITATIONS
109	Formation of Biomembrane Microarrays with a Squeegee-based Assembly Method. Journal of Visualized Experiments, 2014, , .	0.2	1
110	Squeezing Millimeter Waves through a Single, Nanometer-wide, Centimeter-long Slit. Scientific Reports, 2014, 4, 6722.	1.6	34
111	Atomic Layer Lithography of Plasmonic Nanogap Structures for Sensing and Spectroscopy. , 2014, , .		Ο
112	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	1.6	43
113	Nanoscale Fluorescence Lifetime Imaging of an Optical Antenna with a Single Diamond NV Center. Nano Letters, 2013, 13, 3807-3811.	4.5	85
114	Tip-based plasmonics: squeezing light with metallic nanoprobes. Laser and Photonics Reviews, 2013, 7, 453-477.	4.4	39
115	Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nature Communications, 2013, 4, 2361.	5.8	286
116	Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping. ACS Applied Materials & Interfaces, 2013, 5, 9701-9708.	4.0	27
117	Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics, 2013, 2, 83-101.	2.9	83
118	Full Wave Modelling of Light Propagation and Reflection. Computer Graphics Forum, 2013, 32, 24-37.	1.8	29
119	Selfâ€Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Advanced Materials, 2013, 25, 2678-2685.	11.1	222
120	Thermal Stability of Gold Nanorods for High-Temperature Plasmonic Sensing. Journal of Physical Chemistry C, 2013, 117, 11718-11724.	1.5	49
121	Topographically Flat Substrates with Embedded Nanoplasmonic Devices for Biosensing. Advanced Functional Materials, 2013, 23, 2812-2820.	7.8	36
122	Template-Stripped Asymmetric Metallic Pyramids for Tunable Plasmonic Nanofocusing. Nano Letters, 2013, 13, 5635-5641.	4.5	39
123	Nanopore-Induced Spontaneous Concentration for Optofluidic Sensing and Particle Assembly. Analytical Chemistry, 2013, 85, 971-977.	3.2	32
124	A fast and high-order accurate surface perturbation method for nanoplasmonic simulations: basic concepts, analytic continuation and applications. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2175.	0.8	9
125	A patterned recombinant human IgM guides neurite outgrowth of CNS neurons. Scientific Reports, 2013, 3, 2267.	1.6	17
126	Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing (Adv. Mater. 19/2013). Advanced Materials, 2013, 25, 2677-2677.	11.1	3

#	Article	IF	CITATIONS
127	Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab on A Chip, 2012, 12, 3882.	3.1	74
128	Improved dielectric functions in metallic films obtained via template stripping. Applied Physics Letters, 2012, 100, 081105.	1.5	25
129	Optical dielectric function of gold. Physical Review B, 2012, 86, .	1.1	704
130	Atomic layer deposition: A versatile technique for plasmonics and nanobiotechnology. Journal of Materials Research, 2012, 27, 663-671.	1.2	54
131	High-Density Arrays of Submicron Spherical Supported Lipid Bilayers. Analytical Chemistry, 2012, 84, 8207-8213.	3.2	12
132	Effect of Nanohole Spacing on the Self-Imaging Phenomenon Created by the Three-Dimensional Propagation of Light through Periodic Nanohole Arrays. Journal of Physical Chemistry C, 2012, 116, 19958-19967.	1.5	9
133	Ultrasmooth metallic films with buried nanostructures for backside reflectionâ€mode plasmonic biosensing. Annalen Der Physik, 2012, 524, 687-696.	0.9	40
134	Highly Reproducible Near-Field Optical Imaging with Sub-20-nm Resolution Based on Template-Stripped Gold Pyramids. ACS Nano, 2012, 6, 9168-9174.	7.3	130
135	Nanohole-Based Surface Plasmon Resonance Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics. Analytical Chemistry, 2012, 84, 1941-1947.	3.2	96
136	Sub-20 Nanometer Single Molecule Imaging Using Mass Fabricated Pyramidal Microstructures. , 2012, , .		0
137	High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance. Analytical Chemistry, 2012, 84, 6031-6039.	3.2	38
138	Linewidthâ€Optimized Extraordinary Optical Transmission in Water with Templateâ€Stripped Metallic Nanohole Arrays. Advanced Functional Materials, 2012, 22, 4439-4446.	7.8	49
139	Singleâ€Crystalline Silver Films for Plasmonics. Advanced Materials, 2012, 24, 3988-3992.	11.1	118
140	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	8.1	427
141	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	4.5	59
142	Recent progress in SERS biosensing. Physical Chemistry Chemical Physics, 2011, 13, 11551.	1.3	598
143	Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011, 5, 6244-6253.	7.3	203
144	Facile Assembly of Micro- and Nanoarrays for Sensing with Natural Cell Membranes. ACS Nano, 2011, 5, 7555-7564.	7.3	49

#	Article	IF	CITATIONS
145	Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells. Applied Physics Letters, 2011, 99, 103306.	1.5	28
146	Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes. ACS Nano, 2010, 4, 947-954.	7.3	90
147	Vertically Oriented Sub-10-nm Plasmonic Nanogap Arrays. Nano Letters, 2010, 10, 2231-2236.	4.5	384
148	Three-Dimensional Plasmonic Nanofocusing. Nano Letters, 2010, 10, 1369-1373.	4.5	167
149	Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chemical Science, 2010, 1, 688.	3.7	118
150	Self-Assembled Plasmonic Nanohole Arrays. Langmuir, 2009, 25, 13685-13693.	1.6	154
151	Surface plasmon resonance for highâ€throughput ligand screening of membraneâ€bound proteins. Biotechnology Journal, 2009, 4, 1542-1558.	1.8	108
152	Plasmonic Nanoholes in a Multichannel Microarray Format for Parallel Kinetic Assays and Differential Sensing. Analytical Chemistry, 2009, 81, 2854-2859.	3.2	112
153	Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science, 2009, 325, 594-597.	6.0	770
154	Plasmonic nano-structures for optical data storage. Optics Express, 2009, 17, 14001.	1.7	150
155	Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab on A Chip, 2009, 9, 382-387.	3.1	126
156	Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment. , 2009, 2009, 1481-4.		5
157	Plasmonic oOptical data storage. , 2009, , .		1
158	Plasmonic nano-structures for optical data storage. Proceedings of SPIE, 2009, , .	0.8	0
159	Plasmonic Nano-structures for Optical Data Storage. , 2009, , .		4
160	Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Applied Physics Letters, 2008, 93, 123308.	1.5	165
161	Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Optics Express, 2008, 16, 219.	1.7	105
162	Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. , 2008, , .		0

Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. , 2008, , . 162

#	Article	IF	CITATIONS
163	Plasmonic nanohole arrays for real-time multiplex biosensing. Proceedings of SPIE, 2008, , .	0.8	10
164	Construction of a Magnetic Biosensor for Pathogen Detection. Journal of Medical Devices, Transactions of the ASME, 2008, 2, .	0.4	2
165	Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Applied Physics Letters, 2007, 90, 243110.	1.5	254
166	Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors. Physical Review B, 2007, 76, .	1.1	15
167	Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator. Applied Physics Letters, 2007, 91, 253105.	1.5	20
168	Microfluidic Protein Detection through Genetically Engineered Bacterial Cells. Journal of Proteome Research, 2006, 5, 3433-3437.	1.8	20
169	High-bandwidth radio frequency Coulter counter. Applied Physics Letters, 2005, 87, 184106.	1.5	65
170	Attenuation Mechanism Effect on Filter Shape in Channelized Dynamic Spectral Equalizers. Applied Optics, 2004, 43, 127.	2.1	8
171	Monolithic fringe-field-activated crystalline silicon tilting-mirror devices. Journal of Microelectromechanical Systems, 2003, 12, 702-707.	1.7	26
172	The vertical replacement-gate (VRG) MOSFET. Solid-State Electronics, 2002, 46, 939-950.	0.8	32
173	The Application of Solid Source Diffusion in the Vertical Replacement-Gate (VRG) MOSFET. Materials Research Society Symposia Proceedings, 2000, 610, 321.	0.1	1
174	Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Letters, 2000, 21, 445-447.	2.2	298
175	50 nm Vertical Replacement-Gate (VRG) pMOSFETs. , 0, , .		1

176 Fringe-field-activated SOI tilting mirrors. , 0, , .

0