Betsy Ferguson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5742129/publications.pdf

Version: 2024-02-01

516710 642732 2,793 24 16 23 citations g-index h-index papers 25 25 25 3981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurobeachin, a promising target for use in the treatment of alcohol use disorder. Addiction Biology, 2022, 27, e13107.	2.6	O
2	Myelinâ€specific T cells in animals with Japanese macaque encephalomyelitis. Annals of Clinical and Translational Neurology, 2021, 8, 456-470.	3.7	5
3	A novel non-human primate model of Pelizaeus-Merzbacher disease. Neurobiology of Disease, 2021, 158, 105465.	4.4	6
4	Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020, 370, .	12.6	105
5	Spontaneous <i>KRT5</i> Gene Mutation in Rhesus Macaques (<i>Macaca mulatta</i>): A Novel Nonhuman Primate Model of Epidermolysis Bullosa Simplex. Veterinary Pathology, 2020, 57, 344-348.	1.7	6
6	Bardet-Biedl Syndrome in rhesus macaques: A nonhuman primate model of retinitis pigmentosa. Experimental Eye Research, 2019, 189, 107825.	2.6	35
7	mGAP: the macaque genotype and phenotype resource, a framework for accessing and interpreting macaque variant data, and identifying new models of human disease. BMC Genomics, 2019, 20, 176.	2.8	26
8	Analysis of 100 high-coverage genomes from a pedigreed captive baboon colony. Genome Research, 2019, 29, 848-856.	5.5	27
9	Modulation of Gpr39, a G-protein coupled receptor associated with alcohol use in non-human primates, curbs ethanol intake in mice. Neuropsychopharmacology, 2019, 44, 1103-1113.	5.4	15
10	Discovery of a CLN7 model of Batten disease in non-human primates. Neurobiology of Disease, 2018, 119, 65-78.	4.4	29
11	Alcohol-dose-dependent DNA methylation and expression in the nucleus accumbens identifies coordinated regulation of synaptic genes. Translational Psychiatry, 2017, 7, e994-e994.	4.8	36
12	Whole genome sequencing predicts novel human disease models in rhesus macaques. Genomics, 2017, 109, 214-220.	2.9	28
13	Allogeneic stem cell transplantation in fully MHC-matched Mauritian cynomolgus macaques recapitulates diverse human clinical outcomes. Nature Communications, 2017, 8, 1418.	12.8	22
14	Genome-wide analysis of the nucleus accumbens identifies DNA methylation signals differentiating low/binge from heavy alcohol drinking. Alcohol, 2017, 60, 103-113.	1.7	30
15	Whole-genome characterization in pedigreed non-human primates using genotyping-by-sequencing (GBS) and imputation. BMC Genomics, 2016, 17, 676.	2.8	9
16	The population genomics of rhesus macaques (<i>Macaca mulatta</i>) based on whole-genome sequences. Genome Research, 2016, 26, 1651-1662.	5.5	101
17	Immunopathology of Japanese macaque encephalomyelitis is similar to multiple sclerosis. Journal of Neuroimmunology, 2016, 291, 1-10.	2.3	15
18	MAOA expression predicts vulnerability for alcohol use. Molecular Psychiatry, 2016, 21, 472-479.	7.9	38

#	Article	lF	CITATION
19	A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biology Direct, 2014, 9, 20.	4.6	165
20	Development and validation of a SNPâ€based assay for inferring the genetic ancestry of rhesus macaques (<i>Macaca mulatta</i>). American Journal of Primatology, 2014, 76, 1105-1113.	1.7	23
21	Genetic load is associated with hypothalamic–pituitary–adrenal axis dysregulation inÂmacaques. Genes, Brain and Behavior, 2012, 11, 949-957.	2.2	10
22	Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. Science, 2007, 316, 222-234.	12.6	1,283
23	Single nucleotide polymorphisms (SNPs) distinguish Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta). BMC Genomics, 2007, 8, 43.	2.8	87
24	X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genetics, 1996, 13, 409-416.	21.4	691