Carlos Platas-Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740971/publications.pdf

Version: 2024-02-01

281 papers 8,101 citations

41323 49 h-index 98753 67 g-index

289 all docs

289 docs citations

times ranked

289

5934 citing authors

#	Article	IF	CITATIONS
1	Cooperative Luminescence and Cooperative Sensitisation Upconversion of Lanthanide Complexes in Solution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
2	Cooperative Luminescence and Cooperative Sensitisation Upconversion of Lanthanide Complexes in Solution. Angewandte Chemie, $2022,134,\ldots$	1.6	4
3	Stable and inert macrocyclic cobalt(<scp>ii</scp>) and nickel(<scp>ii</scp>) complexes with paraCEST response. Dalton Transactions, 2022, 51, 1580-1593.	1.6	7
4	The critical role of ligand topology: strikingly different properties of Gd(<scp>iii</scp>) complexes with regioisomeric AAZTA derivatives. Inorganic Chemistry Frontiers, 2022, 9, 2271-2283.	3.0	4
5	Exploiting the Fluxionality of Lanthanide Complexes in the Design of Paramagnetic Fluorine Probes. Inorganic Chemistry, 2022, 61, 4130-4142.	1.9	5
6	Rigidified Derivative of the Non-macrocyclic Ligand H ₄ OCTAPA for Stable Lanthanide(III) Complexation. Inorganic Chemistry, 2022, 61, 5157-5171.	1.9	11
7	Surprising Complexity of the [Gd(AAZTA)(H ₂ 0) ₂] ^{â^'} Chelate Revealed by NMR in the Frequency and Time Domains. Inorganic Chemistry, 2022, 61, 496-506.	1.9	4
8	Versatile Macrocyclic Platform for the Complexation of [^{nat} Y/ ⁹⁰ Y]Yttrium and Lanthanide lons. Inorganic Chemistry, 2022, 61, 6209-6222.	1.9	6
9	Relevance of Palladium to Radiopharmaceutical Development Considering Enhanced Coordination Properties of TE1PA. Chemistry - A European Journal, 2022, , .	1.7	2
10	Prediction of Gd(III) complex thermodynamic stability. Coordination Chemistry Reviews, 2022, 467, 214606.	9.5	9
11	Zeolitic imidazolate framework (AMCD-ZIF) functionalised membrane for the removal of dyes from water. Journal of Environmental Chemical Engineering, 2022, 10, 108019.	3.3	5
12	Front Cover: Relevance of Palladium to Radiopharmaceutical Development Considering Enhanced Coordination Properties of TE1PA (Chem. Eur. J. 41/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0
13	Importance of ligand design in lanthanide azamacrocyclic complexes relevant to biomedical applications. Fundamental Theories of Physics, 2022, , 129-220.	0.1	1
14	Upconversion in a d–f [RuYb ₃] Supramolecular Assembly. Journal of the American Chemical Society, 2022, 144, 13356-13365.	6.6	16
15	Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. International Reviews in Physical Chemistry, 2021, 40, 51-79.	0.9	14
16	Viologen–cucurbituril host/guest chemistry – redox control of dimerization <i>versus</i> inclusion. RSC Advances, 2021, 11, 29543-29554.	1.7	3
17	Defining the conditions for the development of the emerging class of Fe ^{III} -based MRI contrast agents. Chemical Science, 2021, 12, 11138-11145.	3.7	34
18	Lanthanide(III) Complexes Based on an 18-Membered Macrocycle Containing Acetamide Pendants. Structural Characterization and paraCEST Properties. Inorganic Chemistry, 2021, 60, 1902-1914.	1.9	5

#	Article	IF	CITATIONS
19	Stability, relaxometric and computational studies on Mn ²⁺ complexes with ligands containing a cyclobutane scaffold. Dalton Transactions, 2021, 50, 1076-1085.	1.6	4
20	Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Gadolinium Complexation. Inorganic Chemistry, 2021, 60, 2390-2405.	1.9	12
21	Scrutinising the role of intramolecular hydrogen bonding in water exchange dynamics of Gd(<scp>iii</scp>) complexes. Dalton Transactions, 2021, 50, 5506-5518.	1.6	5
22	Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules, 2021, 26, 1524.	1.7	7
23	4 Metal Ion Complexes in Paramagnetic Chemical Exchange Saturation Transfer (ParaCEST). , 2021, , 101-136.		2
24	Electronic Structure of Ytterbium(III) Solvates—a Combined Spectroscopic and Theoretical Study. Inorganic Chemistry, 2021, 60, 7453-7464.	1.9	16
25	Complexation of <i>C</i> Functionalized Cyclams with Copper(II) and Zinc(II): Similarities and Changes When Compared to Parent Cyclam Analogues. Inorganic Chemistry, 2021, 60, 10857-10872.	1.9	10
26	Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd ³⁺ and Eu ³⁺ lons in the Saponite Framework. Inorganic Chemistry, 2021, 60, 10749-10756.	1.9	4
27	Oxygen-mediated oxidation of ferrous nitrosylated nitrobindins. Journal of Inorganic Biochemistry, 2021, 224, 111579.	1.5	10
28	Thiosemicarbazone modified zeolitic imidazolate framework (TSC-ZIF) for mercury(<scp>ii</scp>) removal from water. RSC Advances, 2021, 11, 16192-16199.	1.7	5
29	Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry, 2021, 60, 1133-1148.	1.9	34
30	Rigid versions of PDTA ^{4â^'} incorporating a 1,3-diaminocyclobutyl spacer for Mn ²⁺ complexation: stability, water exchange dynamics and relaxivity. Dalton Transactions, 2021, 50, 16290-16303.	1.6	5
31	Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorganic Chemistry, 2021, 60, 15055-15068.	1.9	11
32	Ditopic binuclear copper(II) complexes for DNA cleavage. Journal of Inorganic Biochemistry, 2020, 205, 110995.	1.5	6
33	Combined NMR, DFT and X-ray studies highlight structural and hydration changes of [Ln(AAZTA)] ^{â^'} complexes across the series. Inorganic Chemistry Frontiers, 2020, 7, 795-803.	3.0	16
34	The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coordination Chemistry Reviews, 2020, 406, 213146.	9.5	64
35	Expanding the Scope of Pyclen-Picolinate Lanthanide Chelates to Potential Theranostic Applications. Inorganic Chemistry, 2020, 59, 11736-11748.	1.9	14
36	Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorganic Chemistry, 2020, 59, 14306-14317.	1.9	10

#	Article	IF	CITATIONS
37	Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorganic Chemistry, 2020, 59, 6648-6678.	1.9	80
38	Europium(III) Macrocyclic Chelates Appended with Tyrosineâ€based Chromophores and Diâ€(2â€picolyl)amineâ€based Receptors: Turnâ€On Luminescent Chemosensors Selective to Zinc(II) Ions. ChemPlusChem, 2020, 85, 796-796.	1.3	O
39	Macrocyclic Pyclen-Based Gd3+ Complex with High Relaxivity and pH Response. Inorganic Chemistry, 2020, 59, 7306-7317.	1.9	4
40	Ferric nitrosylated myoglobin catalyzes peroxynitrite scavenging. Journal of Biological Inorganic Chemistry, 2020, 25, 361-370.	1.1	6
41	Europium(III) Macrocyclic Chelates Appended with Tyrosineâ€based Chromophores and Diâ€(2â€picolyl)amineâ€based Receptors: Turnâ€On Luminescent Chemosensors Selective to Zinc(II) Ions. ChemPlusChem, 2020, 85, 806-814.	1.3	7
42	Axial Ligation in Ytterbium(III) DOTAM Complexes Rationalized with Multireference and Ligand-Field ab Initio Calculations. Journal of Physical Chemistry A, 2020, 124, 1362-1371.	1.1	9
43	Circularly polarized luminescence of enantiopure carboline-based europium cryptates under visible light excitation. Journal of Rare Earths, 2020, 38, 564-570.	2.5	4
44	pHâ€Dependent Hydration Change in a Gdâ€Based MRI Contrast Agent with a Phosphonated Ligand. Chemistry - A European Journal, 2020, 26, 5407-5418.	1.7	8
45	Unexpected Trends in the Stability and Dissociation Kinetics of Lanthanide(III) Complexes with Cyclen-Based Ligands across the Lanthanide Series. Inorganic Chemistry, 2020, 59, 8184-8195.	1.9	15
46	Inert macrocyclic Eu ³⁺ complex with affirmative paraCEST features. Inorganic Chemistry Frontiers, 2020, 7, 2274-2286.	3.0	14
47	Hydrothermal synthesis of six new lanthanides coordination polymers based on 1-H-benzimidazole-5-carboxylic acid: Structure, Hirshfeld analysis, thermal and spectroscopic properties. Inorganica Chimica Acta, 2020, 510, 119740.	1.2	6
48	Investigations into the effects of linker length elongation on the behaviour of calcium-responsive MRI probes. Dalton Transactions, 2019, 48, 13546-13554.	1.6	4
49	Synthesis of Orthogonal <i>N</i> â€Protected <i>C</i> â€Functional Sideâ€Bridged Cyclams to Give Access to Unsymmetrical Constrained BCAs. European Journal of Organic Chemistry, 2019, 2019, 5955-5962.	1.2	1
50	In-depth Study of a Novel Class of Ditopic Gadolinium(III)-based MRI Probes Sensitive to Zwitterionic Neurotransmitters. Frontiers in Chemistry, 2019, 7, 490.	1.8	3
51	Highly Stable and Inert Complexation of Indium(III) by Reinforced Cyclam Dipicolinate and a Bifunctional Derivative for Bead Encoding in Mass Cytometry. Chemistry - A European Journal, 2019, 25, 15387-15400.	1.7	8
52	Mn(II) compounds as an alternative to Gd-based MRI probes. Future Medicinal Chemistry, 2019, 11, 1461-1483.	1.1	81
53	Gadolinium Complexes of Highly Rigid, Open-Chain Ligands Containing a Cyclobutane Ring in the Backbone: Decreasing Ligand Denticity Might Enhance Kinetic Inertness. Inorganic Chemistry, 2019, 58, 13170-13183.	1.9	10
54	Electronic <i>versus</i> steric control in palladium complexes of carboranyl phosphine-iminophosphorane ligands. Dalton Transactions, 2019, 48, 486-503.	1.6	5

#	Article	IF	Citations
55	A pentadentate member of the picolinate family for Mn(ii) complexation and an amphiphilic derivative. Dalton Transactions, 2019, 48, 696-710.	1.6	11
56	Methylthiazolyl Tacn Ligands for Copper Complexation and Their Bifunctional Chelating Agent Derivatives for Bioconjugation and Copper-64 Radiolabeling: An Example with Bombesin. Inorganic Chemistry, 2019, 58, 2669-2685.	1.9	21
57	Gadolinium(III)â€Based Dual ¹ H/ ¹⁹ F Magnetic Resonance Imaging Probes. Chemistry - A European Journal, 2019, 25, 4782-4792.	1.7	21
58	Accelerating water exchange in Gd ^{III} â€"DO3A-derivatives by favouring the dissociative mechanism through hydrogen bonding. Chemical Communications, 2019, 55, 513-516.	2.2	18
59	Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years. Dalton Transactions, 2019, 48, 11161-11180.	1.6	41
60	Phosphate and polyphosphate anion recognition by a dinuclear copper(<scp>ii</scp>) complex of an unsymmetrical squaramide. Dalton Transactions, 2019, 48, 10104-10115.	1.6	9
61	PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Galliumâ€68 Complexes at Physiological pH. Chemistry - A European Journal, 2019, 25, 10698-10709.	1.7	11
62	Lanthanide Complexes with 1H paraCEST and 19F Response for Magnetic Resonance Imaging Applications. Inorganic Chemistry, 2019, 58, 7571-7583.	1.9	25
63	<i>endo</i> - <i>versus exo</i> -Cyclic coordination in copper complexes with methylthiazolylcarboxylate tacn derivatives. Dalton Transactions, 2019, 48, 8740-8755.	1.6	7
64	Understanding the Optical and Magnetic Properties of Ytterbium(III) Complexes. Inorganic Chemistry, 2019, 58, 3732-3743.	1.9	25
65	Reinforced Ni(<scp>ii</scp>)-cyclam derivatives as dual ¹ H/ ¹⁹ F MRI probes. Chemical Communications, 2019, 55, 4115-4118.	2.2	22
66	Controlling water exchange rates in potential Mn2+-based MRI agents derived from NO2A2â^. Dalton Transactions, 2019, 48, 3962-3972.	1.6	18
67	The role of ligand to metal charge-transfer states on the luminescence of Europium complexes with 18-membered macrocyclic ligands. Dalton Transactions, 2019, 48, 4035-4045.	1.6	26
68	Characterisation of magnetic resonance imaging (MRI) contrast agents using NMR relaxometry. Molecular Physics, 2019, 117, 898-909.	0.8	50
69	Metal–Organic Self-Assembled Trefoil Knots for C—Br Bond Activation. ACS Catalysis, 2019, 9, 1907-1914.	5.5	30
70	Molecular Upconversion in Water in Heteropolynuclear Supramolecular Tb/Yb Assemblies. Journal of the American Chemical Society, 2019, 141, 1568-1576.	6.6	80
71	Synthesis and Characterization of Positively Charged <i>tris</i> â€lmidazolium Calix[6]arene Hosts for Anion Recognition. ChemistrySelect, 2019, 4, 321-328.	0.7	4
72	Water soluble Eu(III) complexes of macrocyclic triamide ligands: Structure, stability, luminescence and redox properties. Inorganica Chimica Acta, 2019, 486, 252-260.	1.2	11

#	Article	IF	CITATIONS
73	Taking the next step toward inert Mn ²⁺ complexes of open-chain ligands: the case of the rigid PhDTA ligand. New Journal of Chemistry, 2018, 42, 8001-8011.	1.4	34
74	Stable and Inert Yttrium(III) Complexes with Pyclen-Based Ligands Bearing Pendant Picolinate Arms: Toward New Pharmaceuticals for β-Radiotherapy. Inorganic Chemistry, 2018, 57, 2051-2063.	1.9	25
75	Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents. Inorganic Chemistry, 2018, 57, 5973-5986.	1.9	18
76	Morphological Diversity in Nanoporous Covalent Organic Materials Derived from Viologen and Pyrene. ChemNanoMat, 2018, 4, 61-65.	1.5	20
77	A Coordination Chemistry Approach to Fine†une the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications. Chemistry - A European Journal, 2018, 24, 3127-3131.	1.7	22
78	Remarkable differences and similarities between the isomeric Mn(II)- cis - and trans-1,2-diaminocyclohexane- N , N , N $\hat{a} \in ^2$, N $\hat{a} \in ^2$ -tetraacetate complexes. Inorganica Chimica Acta, 2018, 472, 254-26	3 ^{1.2}	21
79	On the consequences of the stereochemical activity of the Bi(<scp>iii</scp>) 6s ² lone pair in cyclen-based complexes. The [Bi(DO3A)] case. Dalton Transactions, 2018, 47, 13830-13842.	1.6	19
80	Modeling the OEC with Two New Biomimetic Models: Preparations, Structural Characterization, and Water Photolysis Studies of a Ba–Mn Box Type Complex and a Mn4N6 Planar-Diamond Cluster. Catalysts, 2018, 8, 382.	1.6	3
81	Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic—Acid Moieties. Molecules, 2018, 23, 479.	1.7	16
82	Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorganic Chemistry, 2018, 57, 6932-6945.	1.9	33
83	Sensing Uranyl(VI) Ions by Coordination and Energy Transfer to a Luminescent Europium(III) Complex. Angewandte Chemie, 2018, 130, 10069-10072.	1.6	12
84	Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of <i>m</i> -Xylyl-bis-cyclen. Inorganic Chemistry, 2018, 57, 6466-6478.	1.9	13
85	Modulating the DNA cleavage ability of copper(<scp>ii</scp>) Schiff bases through ternary complex formation. New Journal of Chemistry, 2018, 42, 15170-15183.	1.4	12
86	Long Wavelength Excitation of Europium Luminescence in Extended, Carboline-Based Cryptates. Inorganic Chemistry, 2018, 57, 7390-7401.	1.9	12
87	Sensing Uranyl(VI) Ions by Coordination and Energy Transfer to a Luminescent Europium(III) Complex. Angewandte Chemie - International Edition, 2018, 57, 9921-9924.	7.2	50
88	Diimidazolium Halobismuthates [Dim] < sub>2 < /sub> [Bi < sub>2 < /sub> X < sub> 10 < /sub>] (X =) Tj ETQq0 0 0 rgBT / Photoluminescent Materials. Inorganic Chemistry, 2018, 57, 7655-7664.	Overlock 1 1.9	10 Tf 50 147 56
89	Upconverted Photosensitization of Tb Visible Emission by NIR Yb Excitation in Discrete Supramolecular Heteropolynuclear Complexes. Journal of the American Chemical Society, 2017, 139, 1456-1459.	6.6	96
90	Ditopic receptors containing urea groups for solvent extraction of Cu(<scp>ii</scp>) salts. Dalton Transactions, 2017, 46, 3192-3206.	1.6	16

#	Article	IF	CITATIONS
91	Spectroscopic Properties of a Family of Mono- to Trinuclear Lanthanide Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 2122-2129.	1.0	8
92	1,4,7‶riazacyclononaneâ€Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. European Journal of Inorganic Chemistry, 2017, 2017, 2435-2443.	1.0	23
93	Selective growth inhibition of cancer cells with doxorubicin-loaded CB[7]-modified iron-oxide nanoparticles. RSC Advances, 2017, 7, 23827-23834.	1.7	28
94	Spectrally Undiscerned Isomers Might Lead to Erroneous Determination of Water Exchange Rates of paraCEST Eu(III) Agents. Inorganic Chemistry, 2017, 56, 7737-7745.	1.9	17
95	Developing the family of picolinate ligands for Mn ²⁺ complexation. Dalton Transactions, 2017, 46, 1546-1558.	1.6	41
96	Enantiomeric Recognition of <scp>d</scp> - and <scp> </scp> -Lactate by CEST with the Aid of a Paramagnetic Shift Reagent. Journal of the American Chemical Society, 2017, 139, 17431-17437.	6.6	26
97	Toward inert paramagnetic Ni(<scp>ii</scp>)-based chemical exchange saturation transfer MRI agents. Dalton Transactions, 2017, 46, 15095-15106.	1.6	14
98	A combined NMR and DFT study of conformational dynamics in lanthanide complexes of macrocyclic DOTA-like ligands. Physical Chemistry Chemical Physics, 2017, 19, 26662-26671.	1.3	26
99	Effects of the substituents of pyrazole/thiazine ligands on the magnetic properties of chloro-bridged Cu(<scp>ii</scp>) complexes. New Journal of Chemistry, 2017, 41, 8818-8827.	1.4	8
100	The role of the capping bond effect on pyclen ^{nat} Y ³⁺ delates: full control of the regiospecific N-functionalization makes the difference. Chemical Communications, 2017, 53, 9534-9537.	2.2	23
101	Tuning the copper(<scp>ii</scp>) coordination properties of cyclam by subtle chemical modifications. Dalton Transactions, 2017, 46, 11479-11490.	1.6	9
102	Dimer formation of GdDO3A-arylsulfonamide complexes causes loss of pH-dependency of relaxivity. Dalton Transactions, 2017, 46, 16828-16836.	1.6	13
103	Recognition of phosphopeptides by a dinuclear copper(<scp>ii</scp>) macrocyclic complex in a water : methanol 50 : 50 v/v solution. Dalton Transactions, 2017, 46, 9549-9564.	1.6	9
104	Definition of the Labile Capping Bond Effect in Lanthanide Complexes. Chemistry - A European Journal, 2017, 23, 1110-1117.	1.7	24
105	Chapter 2. Gadolinium-based Contrast Agents. New Developments in NMR, 2017, , 121-242.	0.1	17
106	Chapter 5. Transition Metal-based <i>T1</i> Contrast Agents. New Developments in NMR, 2017, , 448-478.	0.1	3
107	Optimising the relaxivities of Mn ²⁺ complexes by targeting human serum albumin (HSA). Dalton Transactions, 2017, 46, 8494-8504.	1.6	27
108	Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)â€Based MRI Contrast Agents with Highly Rigid Openâ€Chain Derivatives. Chemistry - A European Journal, 2016, 22, 896-901.	1.7	31

#	Article	IF	CITATIONS
109	Step by Step Assembly of Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand. Inorganic Chemistry, 2016, 55, 12962-12974.	1.9	15
110	Breaking the Barrier to Slow Water Exchange Rates for Optimal Magnetic Resonance Detection of paraCEST Agents. Inorganic Chemistry, 2016, 55, 3007-3014.	1.9	28
111	Post-synthetic modifications of cadmium-based knots and links. Chemical Communications, 2016, 52, 7398-7401.	2.2	16
112	Multifunctional redox-tuned viologen-based covalent organic polymers. Journal of Materials Chemistry A, 2016, 4, 15361-15369.	5.2	114
113	Unexpected Changes in the Population of Coordination Isomers for the Lanthanide Ion Complexes of DOTMA–Tetraglycinate. Inorganic Chemistry, 2016, 55, 9297-9305.	1.9	18
114	The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized ⁸⁹ Y Complexes and Their Solution Structures. Chemistry - A European Journal, 2016, 22, 16657-16667.	1.7	16
115	Pyclen Tri- <i>n</i> -butylphosphonate Ester as Potential Chelator for Targeted Radiotherapy: From Yttrium(III) Complexation to ⁹⁰ Y Radiolabeling. Inorganic Chemistry, 2016, 55, 8003-8012.	1.9	19
116	Transient versus Static Electron Spin Relaxation in Mn ²⁺ Complexes Relevant as MRI Contrast Agents. Journal of Physical Chemistry A, 2016, 120, 6467-6476.	1.1	19
117	Water exchange rates and mechanisms in tetrahedral [Be(H ₂ O) ₄] ²⁺ and [Li(H ₂ O) ₄] ⁺ complexes using DFT methods and clusterâ€continuum models. International lournal of Ouantum Chemistry. 2016. 116. 1388-1396.	1.0	5
118	Sulphur-rich functionalized calix[4]arenes for selective complexation of Hg ²⁺ over Cu ²⁺ , Zn ²⁺ and Cd ²⁺ . Dalton Transactions, 2016, 45, 15211-15224.	1.6	14
119	Stimuli-responsive metal-directed self-assembly of a ring-in-ring complex. Dalton Transactions, 2016, 45, 11611-11615.	1.6	12
120	Room temperature molecular up conversion in solution. Nature Communications, 2016, 7, 11978.	5.8	83
121	Paramagnetic lanthanide chelates for multicontrast MRI. Chemical Communications, 2016, 52, 9224-9227.	2.2	22
122	Magnetic Anisotropy in Functionalized Bipyridyl Cryptates. Inorganic Chemistry, 2016, 55, 5549-5557.	1.9	15
123	Complexation of [Gd(DTTA–Me)(H ₂ O) ₂] ^{â^'} by Fluoride and Its Consequences to Water Exchange. Inorganic Chemistry, 2016, 55, 6231-6239.	1.9	9
124	A density functional theory study on the interaction of dipicolinic acid with hydrated Fe2+ cation. Computational and Theoretical Chemistry, 2016, 1090, 134-146.	1.1	4
125	Improving the stability and inertness of Cu(<scp>ii</scp>) and Cu(<scp>i</scp>) complexes with methylthiazolyl ligands by tuning the macrocyclic structure. Dalton Transactions, 2016, 45, 7406-7420.	1.6	31
126	Complexation of Ln ³⁺ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorganic Chemistry, 2016, 55, 2227-2239.	1.9	26

#	Article	IF	CITATIONS
127	Self-assembly of Pd ₂ L ₂ Metallacycles Owning Diversely Functionalized Racemic Ligands. Inorganic Chemistry, 2016, 55, 2290-2298.	1.9	15
128	[C–Hâ√anion] interactions mediate the templation and anion binding properties of topologically non-trivial metal–organic structures in aqueous solutions. Chemical Science, 2016, 7, 2524-2531.	3.7	50
129	Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney's Theory. Inorganic Chemistry, 2016, 55, 3490-3497.	1.9	46
130	Synthesis and characterisation of bismacrocyclic DO3A-amide derivatives – an approach towards metal-responsive PARACEST agents. Dalton Transactions, 2016, 45, 6555-6565.	1.6	7
131	Cyclams with Ambidentate Methylthiazolyl Pendants for Stable, Inert, and Selective Cu(II) Coordination. Inorganic Chemistry, 2016, 55, 619-632.	1.9	15
132	Macrocyclic Gd ³⁺ Complexes with Pendant Crown Ethers Designed for Binding Zwitterionic Neurotransmitters. Chemistry - A European Journal, 2015, 21, 11226-11237.	1.7	21
133	Importance of Outerâ€Sphere and Aggregation Phenomena in the Relaxation Properties of Phosphonated Gadolinium Complexes with Potential Applications as MRI Contrast Agents. Chemistry - A European Journal, 2015, 21, 6535-6546.	1.7	25
134	Exceptionally Inert Lanthanide(III) PARACEST MRI Contrast Agents Based on an 18â€Membered Macrocyclic Platform. Chemistry - A European Journal, 2015, 21, 18662-18670.	1.7	21
135	Toward the Prediction of Water Exchange Rates in Magnetic Resonance Imaging Contrast Agents: A Density Functional Theory Study. Journal of Physical Chemistry A, 2015, 119, 6436-6445.	1.1	54
136	H ₄ octapa: Highly Stable Complexation of Lanthanide(III) Ions and Copper(II). Inorganic Chemistry, 2015, 54, 2345-2356.	1.9	40
137	Lanthanide(III) Complexation with an Amide Derived Pyridinophane. Inorganic Chemistry, 2015, 54, 1671-1683.	1.9	19
138	AMPED: a new platform for picolinate based luminescent lanthanide chelates. Dalton Transactions, 2015, 44, 7654-7661.	1.6	18
139	Investigating the Complexation of the Pb ²⁺ /Bi ³⁺ Pair with Dipicolinate Cyclen Ligands. Inorganic Chemistry, 2015, 54, 7045-7057.	1.9	45
140	Complexation of Sm3+ and pamidronate: A DFT study. Journal of Rare Earths, 2015, 33, 310-319.	2.5	2
141	[Tl ^{Ill} (dota)] ^{â^'} : An Extraordinarily Robust Macrocyclic Complex. Inorganic Chemistry, 2015, 54, 5426-5437.	1.9	12
142	Stabilizing Divalent Europium in Aqueous Solution Using Size-Discrimination and Electrostatic Effects. Inorganic Chemistry, 2015, 54, 4940-4952.	1.9	39
143	Stable Mn ²⁺ , Cu ²⁺ and Ln ³⁺ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Transactions, 2015, 44, 5017-5031.	1.6	55
144	Mono-, Bi-, and Trinuclear Bis-Hydrated Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2015, 54, 9576-9587.	1.9	40

#	Article	IF	CITATIONS
145	A [two-step/one week] synthesis of C-functionalized homocyclens and cyclams. Application to the preparation of conjugable BCAs without chelating properties alteration. RSC Advances, 2015, 5, 85898-85910.	1.7	11
146	Gd3+-Based Magnetic Resonance Imaging Contrast Agent Responsive to Zn2+. Inorganic Chemistry, 2015, 54, 10342-10350.	1.9	29
147	Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. Journal of Materials Chemistry B, 2015, 3, 7237-7245.	2.9	131
148	Dynamic stereoisomerization in inherently chiral bimetallic [2]catenanes. Chemical Communications, 2015, 51, 5840-5843.	2.2	22
149	Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19
150	Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness. Journal of the American Chemical Society, 2014, 136, 17954-17957.	6.6	53
151	Lanthanide Complexes with Heteroditopic Ligands as Fluorescent Zinc Sensors. European Journal of Inorganic Chemistry, 2014, 2014, 1072-1081.	1.0	29
152	Radicalâ€Cation Dimerization Overwhelms Inclusion in [<i>n</i>)]Pseudorotaxanes. Chemistry - A European Journal, 2014, 20, 7334-7344.	1.7	26
153	High Relaxivity Mn ²⁺ â€Based MRI Contrast Agents. Chemistry - A European Journal, 2014, 20, 17300-17305.	1.7	25
154	"Cinderella―elements: Strategies to increase the stability of group 1 complexes by tailoring crown macrocycles. Inorganica Chimica Acta, 2014, 417, 155-162.	1.2	4
155	The first enantiopure lanthanoid cryptate. Dalton Transactions, 2014, 43, 4238-4241.	1.6	12
156	Reasons behind the Relative Abundances of Heptacoordinate Complexes along the Late First-Row Transition Metal Series. Inorganic Chemistry, 2014, 53, 12859-12869.	1.9	35
157	Lower Denticity Leading to Higher Stability: Structural and Solution Studies of Ln(III)–OBETA Complexes. Inorganic Chemistry, 2014, 53, 12499-12511.	1.9	31
158	Tetraphosphonated thiophene ligand: mixing the soft and the hard. Dalton Transactions, 2014, 43, 9070-9080.	1.6	8
159	H2Me-do2pa: an attractive chelator with fast, stable and inert $\langle \sup \rangle$ nat $\langle \sup \rangle$ Bi $\langle \sup \rangle$ 3+ $\langle \sup \rangle$ 3 and $\langle \sup \rangle$ 213 $\langle \sup \rangle$ 8i $\langle \sup \rangle$ 3+ $\langle \sup \rangle$ 5 complexation for potential α-radioimmunotherapy applications. Chemical Communications, 2014, 50, 12371-12374.	2.2	26
160	17O and 1H relaxometric and DFT study of hyperfine coupling constants in [Mn(H2O)6]2+. RSC Advances, 2014, 4, 7094.	1.7	49
161	Secrets of Solid State and Aqueous Solution Structures of [Ni(tmdta)] ^{2–} . Inorganic Chemistry, 2014, 53, 6684-6697.	1.9	8
162	Monopicolinate Cross-Bridged Cyclam Combining Very Fast Complexation with Very High Stability and Inertness of Its Copper(II) Complex. Inorganic Chemistry, 2014, 53, 5269-5279.	1.9	51

#	Article	IF	CITATIONS
163	Cooperative Anion Recognition in Copper(II) and Zinc(II) Complexes with a Ditopic Tripodal Ligand Containing a Urea Group. Inorganic Chemistry, 2014, 53, 2554-2568.	1.9	29
164	Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing. Angewandte Chemie - International Edition, 2014, 53, 7259-7263.	7.2	85
165	Spontaneous Self-Assembly of a 1,8-Naphthyridine into Diverse Crystalline 1D Nanostructures: Implications on the Stimuli-Responsive Luminescent Behaviour. Crystal Growth and Design, 2014, 14, 3849-3856.	1.4	11
166	Dualâ€Frequency Calciumâ€Responsive MRI Agents. Chemistry - A European Journal, 2014, 20, 7351-7362.	1.7	44
167	Picolinate-Containing Macrocyclic Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2014, 53, 5136-5149.	1.9	54
168	Full Control of the Regiospecific $\langle i \rangle N \langle i \rangle$ -Functionalization of $\langle i \rangle C \langle i \rangle$ -Functionalized Cyclam Bisaminal Derivatives and Application to the Synthesis of their TETA, TE2A, and CB-TE2A Analogues. Journal of Organic Chemistry, 2014, 79, 1885-1899.	1.7	31
169	Aqueous Complexes for Efficient Size-based Separation of Americium from Curium. Inorganic Chemistry, 2014, 53, 6003-6012.	1.9	73
170	A Bis(pyridine <i>N</i> â€oxide) Analogue of DOTA: Relaxometric Properties of the Gd ^{III} Complex and Efficient Sensitization of Visible and NIRâ€Emitting Lanthanide(III) Cations Including Pr ^{III} and Ho ^{III} . Chemistry - A European Journal, 2014, 20, 14834-14845.	1.7	29
171	Understanding Stability Trends along the Lanthanide Series. Chemistry - A European Journal, 2014, 20, 3974-3981.	1.7	68
172	Highly Stable Complexes of Divalent Metal Ions (Mg ²⁺ , Ca ²⁺ ,) Tj ETQq0 0 0 rgBT /Ove Containing a Picolinate Pendant. European Journal of Inorganic Chemistry, 2014, 2014, 6165-6173.	rlock 10 T 1.0	f 50 387 Td (14
173	Selfâ€Aggregated Dinuclear Lanthanide(III) Complexes as Potential Bimodal Probes for Magnetic Resonance and Optical Imaging. Chemistry - A European Journal, 2013, 19, 11696-11706.	1.7	19
174	Ln2M complexes (M = Ru, Re) derived from a bismacrocyclic ligand containing a 4,4′-dimethyl-2,2′-bipyridyl bridging unit. Dalton Transactions, 2013, 42, 3667.	1.6	23
175	Intramolecular redox-induced dimerization in a viologen dendrimer. Journal of Materials Chemistry C, 2013, 1, 2302.	2.7	40
176	Hyperfine Coupling Constants on Inner-Sphere Water Molecules of a Triazacyclononane-based Mn(II) Complex and Related Systems Relevant as MRI Contrast Agents. Inorganic Chemistry, 2013, 52, 11173-11184.	1.9	47
177	Toward theranostic nanoparticles: CB[7]-functionalized iron oxide for drug delivery and MRI. Journal of Materials Chemistry B, 2013, 1, 5076.	2.9	35
178	¹ H and ¹⁷ O NMR Relaxometric and Computational Study on Macrocyclic Mn(II) Complexes. Inorganic Chemistry, 2013, 52, 3268-3279.	1.9	77
179	Monopicolinate-dipicolyl Derivative of Triazacyclononane for Stable Complexation of Cu ²⁺ and ⁶⁴ Cu ²⁺ . Inorganic Chemistry, 2013, 52, 5246-5259.	1.9	52
180	Simultaneous Selfâ€Assembly of a [2]Catenane, a Trefoil Knot, and a Solomon Link from a Simple Pair of Ligands. Angewandte Chemie - International Edition, 2013, 52, 9956-9960.	7.2	99

#	Article	IF	CITATIONS
181	Pyridinophane Platform for Stable Lanthanide(III) Complexation. Inorganic Chemistry, 2013, 52, 6062-6072.	1.9	10
182	Substitution-Assisted Stereochemical Control of Bispidone-Based Ligands. Journal of Organic Chemistry, 2012, 77, 11167-11176.	1.7	14
183	The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy. European Journal of Inorganic Chemistry, 2012, 2012, 2023-2033.	1.0	51
184	Highly relaxing gadolinium based MRI contrast agents responsive to Mg2+ sensing. Chemical Communications, 2012, 48, 4085.	2.2	28
185	Lanthanide Complexes Based on a Diazapyridinophane Platform Containing Picolinate Pendants. Inorganic Chemistry, 2012, 51, 10893-10903.	1.9	33
186	170 NMR and Density Functional Theory Study of the Dynamics of the Carboxylate Groups in DOTA Complexes of Lanthanides in Aqueous Solution. Inorganic Chemistry, 2012, 51, 170-178.	1.9	35
187	Lanthanide(III) Complexes with Ligands Derived from a Cyclen Framework Containing Pyridinecarboxylate Pendants. The Effect of Steric Hindrance on the Hydration Number. Inorganic Chemistry, 2012, 51, 2509-2521.	1.9	63
188	Understanding the Quenching Effects of Aromatic C–H- and C–D-Oscillators in Near-IR Lanthanoid Luminescence. Journal of the American Chemical Society, 2012, 134, 16413-16423.	6.6	101
189	Hyperfine Coupling Constants on Innerâ€5phere Water Molecules of Gd ^{III} â€Based MRI Contrast Agents. ChemPhysChem, 2012, 13, 3640-3650.	1.0	80
190	Density functional dependence of molecular geometries in lanthanide(III) complexes relevant to bioanalytical and biomedical applications. Computational and Theoretical Chemistry, 2012, 999, 93-104.	1.1	54
191	Solution Structure of Ln(III) Complexes with Macrocyclic Ligands Through Theoretical Evaluation of H">sup>H"	1.9	41
192	Monopicolinate Cyclen and Cyclam Derivatives for Stable Copper(II) Complexation. Inorganic Chemistry, 2012, 51, 6916-6927.	1.9	82
193	Probing Electrostatic Potential by NMR with the Use of a Paramagnetic Lanthanide(III) Chelate. Inorganic Chemistry, 2012, 51, 4429-4431.	1.9	8
194	Definition of an Intramolecular Euâ€ŧoâ€Eu Energy Transfer within a Discrete [Eu ₂ L] Complex in Solution. Chemistry - A European Journal, 2012, 18, 8163-8173.	1.7	39
195	Lower Ligand Denticity Leading to Improved Thermodynamic and Kinetic Stability of the Gd ³⁺ Complex: The Strange Case of OBETA. Chemistry - A European Journal, 2012, 18, 7680-7685.	1.7	37
196	Solid state and solution structures of alkaline-earth complexes with lariat ethers containing aniline and benzimidazole pendants. Polyhedron, 2012, 31, 402-412.	1.0	4
197	Macrocyclic Receptor Showing Extremely High Sr(II)/Ca(II) and Pb(II)/Ca(II) Selectivities with Potential Application in Chelation Treatment of Metal Intoxication. Inorganic Chemistry, 2011, 50, 3772-3784.	1.9	60
198	Nonmacrocyclic Luminescent Lanthanide Complexes Stable in Biological Media. Inorganic Chemistry, 2011, 50, 1689-1697.	1.9	34

#	Article	IF	Citations
199	Lanthanide dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of Ln ^{III} -Based Luminescent Probes. Inorganic Chemistry, 2011, 50, 4125-4141.	1.9	76
200	Binuclear Pt – Tl Bonded Complex with Square Pyramidal Coordination around Pt: A Combined Multinuclear NMR, EXAFS, UV–Vis, and DFT/TDDFT Study in Dimethylsulfoxide Solution. Inorganic Chemistry, 2011, 50, 6163-6173.	1.9	7
201	Positively Charged Lanthanide Complexes with Cyclen-Based Ligands: Synthesis, Solid-State and Solution Structure, and Fluoride Interaction. Inorganic Chemistry, 2011, 50, 12508-12521.	1.9	64
202	The effect of ring size variation on the structure and stability of lanthanide(<scp>iii</scp>) complexes with crown ethers containing picolinate pendants. Dalton Transactions, 2011, 40, 384-392.	1.6	29
203	Applications of Density Functional Theory (DFT) to Investigate the Structural, Spectroscopic and Magnetic Properties of Lanthanide(III) Complexes. Current Inorganic Chemistry, 2011, 1, 91-116.	0.2	51
204	A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4,13-diaza-18-crown-6. Inorganica Chimica Acta, 2011, 370, 270-278.	1.2	10
205	Preparation and study of pyridothienopyrazines and their Ruthenium(II) complexes: a new family of bidentate ligands. Tetrahedron, 2011, 67, 2035-2043.	1.0	2
206	Highly stable acyclic bifunctional chelator for 64Cu PET imaging. Radiochimica Acta, 2011, 99, 663-678.	0.5	14
207	Towards Fluoride Sensing with Positively Charged Lanthanide Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 2735-2745.	1.0	45
208	Macrocyclic Receptor Showing Improved Pb ^{II} Zn ^{II} and Pb ^{II} Ca ^{II} Selectivities. European Journal of Inorganic Chemistry, 2010, 2010, 2495-2503.	1.0	16
209	Structure and Dynamics of Lanthanide(III) Complexes with an N-Alkylated do3a Ligand (H3do3a =) Tj ETQq1 Journal of Inorganic Chemistry, 2010, 2010, 3586-3595.	1 0.784314 rg 1.0	
210	Lead(II) Complexes of Lateral Macrobicyclic Receptors That Incorporate a Crown Moiety and a Pyridine Head Unit. European Journal of Inorganic Chemistry, 2010, 2010, 5027-5034.	1.0	10
211	Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its ⟨i⟩cis⟨ i⟩â€Diol and Carboxylate Functions. European Journal of Organic Chemistry, 2010, 2010, 3237-3248.	1.2	28
212	Binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff-bases derived from crown ether platforms: Rare examples of ether oxygen atoms bridging metal centers. Polyhedron, 2010, 29, 2269-2277.	1.0	7
213	An NMR and DFT Investigation on the Conformational Properties of Lanthanide(III) 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetate Analogues Containing Methylenephosphonate Pendant Arms. Inorganic Chemistry, 2010, 49, 4370-4382.	1.9	52
214	Molecular Recognition of Sialic Acid by Lanthanide(III) Complexes through Cooperative Two-Site Binding. Inorganic Chemistry, 2010, 49, 4212-4223.	1.9	33
215	Dynamic formation of self-organized corner-connected square metallocycles by stoichiometric control. Chemical Communications, 2010, 46, 6672.	2.2	16
216	Anion Coordination Effect on the Nuclearity of Coll, Nill, Cull, and ZnllComplexes with a Benzimidazole Pendant-Armed Crown. European Journal of Inorganic Chemistry, 2009, 2009, 400-411.	1.0	13

#	Article	IF	Citations
217	Solidâ€State and Solution Structure of Lanthanide(III) Complexes with a Flexible Pyâ€N ₆ Macrocyclic Ligand. European Journal of Inorganic Chemistry, 2009, 2009, 1086-1095.	1.0	14
218	Macrocyclic Receptor Exhibiting Unprecedented Selectivity for Light Lanthanides. Journal of the American Chemical Society, 2009, 131, 3331-3341.	6.6	128
219	Regioselective Catenation of Dinuclear Palladium and Platinum Metallocycles Promoted by π···΀ Interactions. Inorganic Chemistry, 2009, 48, 4098-4107.	1.9	46
220	Selective Chelation of Cd(II) and Pb(II) versus Ca(II) and Zn(II) by Using Octadentate Ligands Containing Pyridinecarboxylate and Pyridyl Pendants. Inorganic Chemistry, 2009, 48, 10976-10987.	1.9	21
221	Eight-Coordinate $Zn(II)$, $Cd(II)$, and $Pb(II)$ Complexes Based on a 1,7-Diaza-12-crown-4 Platform Endowed with a Remarkable Selectivity over $Ca(II)$. Inorganic Chemistry, 2009, 48, 11821-11831.	1.9	34
222	Expanding the Cavity Size: Preparation of 2:1 Inclusion Complexes Based on Dinuclear Square Metallocycles. Journal of Organic Chemistry, 2009, 74, 6577-6583.	1.7	38
223	Structural Study of Ga(III), In(III), and Fe(III) Complexes of Triaza-Macrocycle Based Ligands with N3S3 Donor Set. Inorganic Chemistry, 2009, 48, 3257-3267.	1.9	23
224	Stability, Water Exchange, and Anion Binding Studies on Lanthanide(III) Complexes with a Macrocyclic Ligand Based on 1,7-Diaza-12-crown-4: Extremely Fast Water Exchange on the Gd ³⁺ Complex. Inorganic Chemistry, 2009, 48, 8878-8889.	1.9	54
225	Interplay between Halogen/Hydrogen Bonding and Electrostatic Interactions in 1,1′-Bis(4-iodobenzyl)-4,4′-bipyridine-1,1′-diium Salts. Crystal Growth and Design, 2009, 9, 5009-5013.	1.4	9
226	Luminescence properties of heterodinuclear Pt–Eu complexes from unusual nonadentate ligands. Dalton Transactions, 2009, , 5688.	1.6	21
227	Solution Structure and Dynamics, Stability, and NIR Emission Properties of Lanthanide Complexes with a Carboxylated Bispyrazolylpyridyl Ligand. Inorganic Chemistry, 2009, 48, 1507-1518.	1.9	55
228	Protonated Macrobicyclic Hosts Containing Pyridine Head Units for Anion Recognition. Chemistry - A European Journal, 2008, 14, 5829-5838.	1.7	21
229	Conformational study of lanthanide(III) complexes of N-(2-salicylaldiminatobenzyl)-1-aza-18-crown-6 by using X-ray and ab initio methods. Polyhedron, 2008, 27, 1415-1422.	1.0	6
230	Lanthanide Complexes Based on a 1,7-Diaza-12-crown-4 Platform Containing Picolinate Pendants: A New Structural Entry for the Design of Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2008, 47, 7840-7851.	1.9	83
231	Stereoselective self-assembly of atropoisomeric Pd(ii) metallocycles induced by an aromatic guest. Chemical Communications, 2008, , 2879.	2.2	25
232	The structure of the lanthanide aquo ions in solution as studied by 170 NMR spectroscopy and DFT calculations. Dalton Transactions, 2008, , 602-607.	1.6	46
233	Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands. Dalton Transactions, 2008, , 5754.	1.6	62
234	Self-Assembly of 1:2 Inclusion Complexes between a Metallocycle Host and Dihydroxyaromatic Guests:  A Redox Controlled Complexation Process. Organic Letters, 2008, 10, 409-412.	2.4	46

#	Article	IF	CITATIONS
235	Tuning the Coordination Sphere around Highly Luminescent Lanthanide Complexes. Inorganic Chemistry, 2008, 47, 3748-3762.	1.9	48
236	A hexaaza macrocyclic ligand containing acetohydrazide pendants for Ln(iii) complexation in aqueous solution. Solid-state and solution structures and DFT calculations. Dalton Transactions, 2008, , 3841.	1.6	26
237	Seven-Coordination versus Six-Coordination in Divalent First-Row Transition-Metal Complexes Derived from 1,10-Diaza-15-crown-5. Inorganic Chemistry, 2007, 46, 8271-8282.	1.9	43
238	Synthesis of New Selfâ€assembled Pd ^{II} and Pt ^{II} Rectangular Metallomacrocycles: A Comparative Study of their Inclusion Complexes. Chemistry - A European Journal, 2007, 13, 8572-8582.	1.7	55
239	Effect of Protonation and Interaction with Anions on a Lead(II) Complex with a Lateral Macrobicycle Containing a Phenol Schiff-Base Spacer. European Journal of Inorganic Chemistry, 2007, 2007, 1635-1643.	1.0	17
240	Receptor versus Counterion: Capability of N, N′-Bis (2-aminobenzyl)-diazacrowns for Giving Endo- and/or Exocyclic Coordination of ZnII. European Journal of Inorganic Chemistry, 2007, 2007, 1874-1883.	1.0	11
241	Metal Ion Complementarity: Effect of Ring-Size Variation on the Conformation and Stability of Lead(II) and Cadmium(II) Complexes with Pendant-Armed Crowns. European Journal of Inorganic Chemistry, 2007, 2007, 2198-2207.	1.0	22
242	Synthesis and crystal structure of manganese(II) complexes with high-denticity ligands derived from azacrowns. Polyhedron, 2007, 26, 4141-4146.	1.0	6
243	Pyridine and phosphonate containing ligands for stable lanthanide complexation. An experimental and theoretical study to assess the solution structure. Dalton Transactions, 2006, , 5404-5415.	1.6	44
244	Lone-Pair Activity in Lead(II) Complexes with Unsymmetrical Lariat Ethers. Inorganic Chemistry, 2006, 45, 5407-5416.	1.9	52
245	Pyridine- and Phosphonate-Containing Ligands for Stable Ln Complexation. Extremely Fast Water Exchange on the GdIIIChelates. Inorganic Chemistry, 2006, 45, 8719-8728.	1.9	87
246	Lanthanide(III) Complexes with a Tetrapyridine Pendant-Armed Macrocyclic Ligand:  1H NMR Structural Determination in Solution, X-ray Diffraction, and Density-Functional Theory Calculations. Inorganic Chemistry, 2006, 45, 4484-4496.	1.9	70
247	{4,10-Bis[2-(2-oxidobenzylideneamino-l̂º2N,O)benzyl]-1,7-dioxa-4,10-diazacyclododecane-l̂º4O1,N4,O3,N10}ytter perchlorate acetonitrile solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m360-m362.	rbium(III) 0.4	1
248	New self-assembled dinuclear Pd(II) and Pt(II) metallomacrocycles of a 4,4′-bipyridin-1-ium ligand with an inner cavity. Tetrahedron Letters, 2006, 47, 3119-3122.	0.7	34
249	Barium(II) thiocyanate templating Schiff-base lateral macrobicycles derived from 1,10-diaza-15-crown-5. Polyhedron, 2005, 24, 289-294.	1.0	10
250	A Schiff base lateral macrobicycle derived from 4,13-diaza-18-crown-6 in its protonated form. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o92-o94.	0.4	4
251	Designing binuclear transition metal complexes: a new example of the versatility of N,Nâ \in 2-bis(2-aminobenzyl)-4,13-diaza-18-crown-6. Dalton Transactions, 2005, , 2031.	1.6	13
252	The highest water exchange rate ever measured for a Gd(iii) chelate. Chemical Communications, 2005, , 4729.	2.2	39

#	Article	IF	CITATIONS
253	Electronic Structure Study of Seven-Coordinate First-Row Transition Metal Complexes Derived from 1,10-Diaza-15-crown-5:Â A Successful Marriage of Theory with Experiment. Inorganic Chemistry, 2005, 44, 9704-9713.	1.9	57
254	Structural and Photophysical Properties of Lathanide(III) Complexes with a Novel Octadentate Iminophenolate Bibracchial Lariat Ether. Inorganic Chemistry, 2005, 44, 4254-4262.	1.9	41
255	Lateral Macrobicyclic Architectures:Â Toward New Lead(II) Sequestering Agents. Inorganic Chemistry, 2005, 44, 5428-5436.	1.9	23
256	Lead(II) Thiocyanate Complexes with Bibracchial Lariat Ethers:  An X-ray and DFT Study. Inorganic Chemistry, 2005, 44, 2224-2233.	1.9	68
257	Lanthanide Chelates Containing Pyridine Units with Potential Application as Contrast Agents in Magnetic Resonance Imaging. Chemistry - A European Journal, 2004, 10, 3579-3590.	1.7	107
258	Zeolite GdNaY Nanoparticles with Very High Relaxivity for Application as Contrast Agents in Magnetic Resonance Imaging ChemInform, 2003, 34, no.	0.1	0
259	Synthesis and structural characterisation of lead(II) isothiocyanate complexes with receptors derived from 1,10-diaza-15-crown-5. Polyhedron, 2003, 22, 2709-2717.	1.0	12
260	[7,13-Bis(2-aminobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane]diisothiocyanatobarium(II). Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m16-m17.	0.4	1
261	A barium perchlorate complex with a lateral macrobicycle derived from 1,10-diaza-15-crown-5 containing a phenol Schiff base spacer. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m93-m94.	0.4	3
262	A barium perchlorate complex with a lateral macrobicycle derived from 4,13-diaza-18-crown-6 containing a pyridine Schiff base spacer. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m450-m451.	0.4	1
263	Templating Schiff-Base Lateral Macrobicycles:  An Experimental and Theoretical Structural Study of the Intermediates. Inorganic Chemistry, 2003, 42, 4299-4307.	1.9	33
264	A Schiff-Base Bibracchial Lariat Ether Forming a Cryptand-like Cavity for Lanthanide Ions. Inorganic Chemistry, 2003, 42, 6946-6954.	1.9	36
265	Stability, structure and dynamics of cationic lanthanide(iii) complexes of N,N′-bis(propylamide)ethylenediamine-N,N′-diacetic acid. Dalton Transactions, 2003, , 727-737.	1.6	32
266	Lead(II) Complexes with Macrocyclic Receptors Derived from 4,13-Diaza-18-crown-6. Inorganic Chemistry, 2002, 41, 7170-7170.	1.9	6
267	Structural and Photophysical Properties of Heterobimetallic 4f-Zn Iminophenolate Cryptates. Inorganic Chemistry, 2002, 41, 5336-5349.	1.9	99
268	Lead(II) Complexes with Macrocyclic Receptors Derived from 4,13-Diaza-18-crown-6. Inorganic Chemistry, 2002, 41, 4337-4347.	1.9	45
269	Structural characterisation, EPR and magnetic properties of f–f and f–d lanthanide(iii) phenolic cryptates. Dalton Transactions RSC, 2002, , 4658.	2.3	54
270	Zeolite GdNaY Nanoparticles with Very High Relaxivity for Application as Contrast Agents in Magnetic Resonance Imaging. Chemistry - A European Journal, 2002, 8, 5121-5131.	1.7	119

#	Article	IF	CITATIONS
271	Comparison of different methods for structural analysis of lanthanide-induced NMR shifts: a case of lanthanide(III) cryptates. Journal of Alloys and Compounds, 2001, 323-324, 824-827.	2.8	13
272	Lanthanide triple-stranded helical complexes with a substituted 2,6-pyridinedicarboxylateElectronic supplementary information (ESI) available: analytical, IR and luminescence data, contact and dipolar shifts, calculated Cartesian co-ordinate for the EuIII complex, plots of chemical shifts for protons H8, H9 versus the chemical shift of proton H2. See http://www.rsc.org/suppdata/dt/b1/b104448f/. Dalton Transactions RSC, 2001, , 3084-3091.	2.3	32
273	Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra. Magnetic Resonance in Chemistry, 2001, 39, 723-726.	1.1	183
274	Mono- and bimetallic lanthanide(III) phenolic cryptates obtained by template reaction: solid state structure, photophysical properties and relaxivity â€. Dalton Transactions RSC, 2000, , 611-618.	2.3	46
275	Effect of a halogenide substituent on the stability and photophysical properties of lanthanide triple-stranded helicates with ditopic ligands derived from bis(benzimidazolyl)pyridine â€. Dalton Transactions RSC, 2000, , 2031-2043.	2.3	27
276	The template synthesis and X-ray crystal structure of the first dinuclear lanthanide(III) iminophenolate cryptate. Chemical Communications, 1999, , 125-126.	2.2	30
277	1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates. Inorganic Chemistry, 1999, 38, 3190-3199.	1.9	82
278	Complexes of lanthanide(III) ions with 18-membered Schiff-base macrocycles. Polyhedron, 1998, 17, 1759-1765.	1.0	9
279	One-Pot Synthesis of Lanthanide and Yttrium Cryptates Containing Pyridine Units. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1997, 52, 1273-1277.	0.3	4
280	Copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexation with <i>N</i> ethylene hydroxycyclams and consequences on the macrocyclic backbone configuration. Dalton Transactions, 0, , .	1.6	5
281	Relevance of Palladium to Radiopharmaceutical Development Considering Enhanced Coordination Properties of TE1PA. Chemistry - A European Journal, 0, , .	1.7	O