
Bruno Savard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combustion and Flame, 2015, 162, 3341-3355.	5.2	104
2	Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proceedings of the Combustion Institute, 2015, 35, 1377-1384.	3.9	70
3	A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. Journal of Computational Physics, 2015, 295, 740-769.	3.8	61
4	Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combustion and Flame, 2015, 162, 2020-2033.	5.2	60
5	An a priori model for the effective species Lewis numbers in premixed turbulent flames. Combustion and Flame, 2014, 161, 1547-1557.	5.2	49
6	Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame. Combustion and Flame, 2018, 193, 229-245.	5.2	48
7	Direct numerical simulation of a spatially developing n-dodecane jet flame under Spray A thermochemical conditions: Flame structure and stabilisation mechanism. Combustion and Flame, 2020, 217, 57-76.	5.2	29
8	Flight Control Using Wing-Tip Plasma Actuation. Journal of Aircraft, 2010, 47, 1836-1846.	2.4	28
9	Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions. Combustion and Flame, 2019, 208, 402-419.	5.2	24
10	Effects of dissipation rate and diffusion rate of the progress variable on local fuel burning rate in premixed turbulent flames. Combustion and Flame, 2017, 180, 77-87.	5.2	21
11	Low-temperature chemistry in n-heptane/air premixed turbulent flames. Combustion and Flame, 2018, 196, 71-84.	5.2	21
12	Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proceedings of the Combustion Institute, 2017, 36, 3543-3549.	3.9	20
13	Direct numerical simulations of rich premixed turbulent n-dodecane/air flames at diesel engine conditions. Proceedings of the Combustion Institute, 2019, 37, 4655-4662.	3.9	18
14	Performance assessment of flamelet models in flame-resolved LES of a high Karlovitz methane/air stratified premixed jet flame. Proceedings of the Combustion Institute, 2019, 37, 2545-2553.	3.9	14
15	Influence of water droplets on propagating detonations. Journal of Loss Prevention in the Process Industries, 2017, 50, 229-236.	3.3	13
16	Structure and propagation of two-dimensional, partially premixed, laminar flames in diesel engine conditions. Proceedings of the Combustion Institute, 2019, 37, 1961-1969.	3.9	13
17	An a priori evaluation of a principal component and artificial neural network based combustion model in diesel engine conditions. Proceedings of the Combustion Institute, 2021, 38, 2701-2709.	3.9	13
18	High-resolution velocimetry technique based on the decaying streaks of phosphor particles. Optics Letters, 2021, 46, 641.	3.3	8

Bruno Savard

#	Article	IF	CITATIONS
19	Decreased mixture reactivity and hot flame speed in the products of diffusion-affected autoignitive cool flames in the NTC regime. Combustion and Flame, 2020, 222, 434-445.	5.2	6
20	Ignition and flame stabilization of nâ€dodecane turbulent premixed flames under Spray A thermochemical conditions. Combustion and Flame, 2022, 242, 112133.	5.2	2
21	Assessment of artificial fluid properties for high-order accurate large-eddy simulations of shock-free compressible turbulent flows with strong temperature gradients. Computers and Fluids, 2019, 190, 274-293.	2.5	0