Takanori Takebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740652/publications.pdf

Version: 2024-02-01

77 6,084 29 65
papers citations h-index g-index

81 81 81 6925
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013, 499, 481-484.	27.8	1,689
2	Multilineage communication regulates human liver bud development from pluripotency. Nature, 2017, 546, 533-538.	27.8	458
3	Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell-Driven Condensation. Cell Stem Cell, 2015, 16, 556-565.	11.1	372
4	Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature Protocols, 2014, 9, 396-409.	12.0	311
5	Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metabolism, 2019, 30, 374-384.e6.	16.2	303
6	Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Reports, 2017, 21, 2661-2670.	6.4	282
7	Organoids by design. Science, 2019, 364, 956-959.	12.6	244
8	Synergistic Engineering: Organoids Meet Organs-on-a-Chip. Cell Stem Cell, 2017, 21, 297-300.	11.1	200
9	Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature, 2019, 574, 112-116.	27.8	199
10	High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell–Derived Organoids. Gastroenterology, 2021, 160, 831-846.e10.	1.3	168
11	Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine, 2018, 35, 114-123.	6.1	135
12	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	11.1	133
13	Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nature Communications, 2020, 11, 4158.	12.8	129
14	Paracrine signals regulate human liver organoid maturation from iPSC. Development (Cambridge), 2017, 144, 1056-1064.	2.5	104
15	Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Reports, 2018, 23, 1620-1629.	6.4	102
16	Reconstruction of human elastic cartilage by a CD44 ⁺ CD90 ⁺ stem cell in the ear perichondrium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14479-14484.	7.1	92
17	Simultaneous Zn2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells. Nature Communications, 2021, 12, 109.	12.8	71
18	<i>De Novo</i> -Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and <i>in Vivo</i> . ACS Nano, 2019, 13, 14426-14436.	14.6	63

#	Article	IF	Citations
19	Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of Forming Gut and Liver Organoids. Stem Cell Reports, 2018, 10, 780-793.	4.8	60
20	Presence of Cartilage Stem/Progenitor Cells in Adult Mice Auricular Perichondrium. PLoS ONE, 2011, 6, e26393.	2.5	55
21	Polygenic architecture informs potential vulnerability to drug-induced liver injury. Nature Medicine, 2020, 26, 1541-1548.	30.7	55
22	Organoid Center Strategies for Accelerating Clinical Translation. Cell Stem Cell, 2018, 22, 806-809.	11.1	43
23	Novel strategies for liver therapy using stem cells. Gut, 2015, 64, 1-4.	12.1	42
24	Common Genetic Variation in Humans Impacts InÂVitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports, 2021, 16, 505-518.	4.8	39
25	Reverse engineering liver buds through self-driven condensation and organization towards medical application. Developmental Biology, 2016, 420, 221-229.	2.0	37
26	Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation through Intercellular TGFB Signaling. Stem Cell Reports, 2018, 11, 306-316.	4.8	37
27	Fetal liver hematopoiesis: from development to delivery. Stem Cell Research and Therapy, 2021, 12, 139.	5.5	36
28	Autotransplantation of Monkey Ear Perichondrium-Derived Progenitor Cells for Cartilage Reconstruction. Cell Transplantation, 2016, 25, 951-962.	2.5	34
29	The generation of pancreatic \hat{l}^2 -cell spheroids in a simulated microgravity culture system. Biomaterials, 2013, 34, 5785-5791.	11.4	32
30	Engineering of human hepatic tissue with functional vascular networks. Organogenesis, 2014, 10, 260-267.	1.2	31
31	The \hat{I}^2 -catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduction and Targeted Therapy, 2019, 4, 63.	17.1	31
32	Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells. Nature Protocols, 2021, 16, 919-936.	12.0	30
33	Polycomb Group Protein Ezh2 Regulates Hepatic Progenitor Cell Proliferation and Differentiation in Murine Embryonic Liver. PLoS ONE, 2014, 9, e104776.	2.5	29
34	Generation of multi-cellular human liver organoids from pluripotent stem cells. Methods in Cell Biology, 2020, 159, 47-68.	1.1	29
35	Efficient Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Three-Dimensional Microscale Culture. Methods in Molecular Biology, 2014, 1210, 131-141.	0.9	25
36	Transient vascularization of transplanted human adult–derived progenitors promotes self-organizing cartilage. Journal of Clinical Investigation, 2014, 124, 4325-4334.	8.2	25

#	Article	IF	Citations
37	Temporal Transition of Mechanical Characteristics of HUVEC/MSC Spheroids Using a Microfluidic Chip with Force Sensor Probes. Micromachines, 2016, 7, 221.	2.9	23
38	Methods for Generating Vascularized Isletâ€Like Organoids Via Selfâ€Condensation. Current Protocols in Stem Cell Biology, 2018, 45, e49.	3.0	23
39	Engineering pancreatic tissues from stem cells towards therapy. Regenerative Therapy, 2016, 3, 15-23.	3.0	22
40	Generation of human induced pluripotent stem cell-derived liver buds with chemically defined and animal origin-free media. Scientific Reports, 2020, 10, 17937.	3.3	21
41	Organoid Medicine in Hepatology. Clinical Liver Disease, 2020, 15, 3-8.	2.1	21
42	Brief Report: Reconstruction of Joint Hyaline Cartilage by Autologous Progenitor Cells Derived from Ear Elastic Cartilage. Stem Cells, 2014, 32, 816-821.	3.2	20
43	Defining Lineage-Specific Membrane Fluidity Signatures that Regulate Adhesion Kinetics. Stem Cell Reports, 2018, 11, 852-860.	4.8	19
44	Organoid transplant approaches for the liver. Transplant International, 2021, 34, 2031-2045.	1.6	18
45	Human liver model systems in a dish. Development Growth and Differentiation, 2021, 63, 47-58.	1.5	17
46	Ring1B promotes hepatic stem/progenitor cell expansion through simultaneous suppression of Cdkn1a and Cdkn2a in mice. Hepatology, 2014, 60, 323-333.	7.3	16
47	Identification of Proliferating Human Hepatic Cells From Human Induced Pluripotent Stem Cells. Transplantation Proceedings, 2014, 46, 1201-1204.	0.6	15
48	Correction of a Factor VIII genomic inversion with designer-recombinases. Nature Communications, 2022, 13, 422.	12.8	14
49	Digitalized Human Organoid for Wireless Phenotyping. IScience, 2018, 4, 294-301.	4.1	13
50	Organogenesis inÂvitro. Current Opinion in Cell Biology, 2021, 73, 84-91.	5.4	12
51	Eicosatetraynoic Acid and Butyrate Regulate Human Intestinal Organoid Mitochondrial and Extracellular Matrix Pathways Implicated in Crohn's Disease Strictures. Inflammatory Bowel Diseases, 2022, 28, 988-1003.	1.9	12
52	Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved synovial MSCs and HUVECs. Stem Cell Research and Therapy, 2022, 13, 177.	5.5	12
53	The promise of human organoids in the digestive system. Cell Death and Differentiation, 2021, 28, 84-94.	11.2	11
54	Nutritional modulation of mouse and human liver bud growth through a branched-amino acid metabolism. Development (Cambridge), 2017, 144, 1018-1024.	2.5	10

#	Article	IF	CITATIONS
55	Illustrating the potency of current Good Manufacturing Practice–compliant induced pluripotent stem cell lines as a source of multiple cell lineages using standardized protocols. Cytotherapy, 2018, 20, 861-872.	0.7	10
56	Isolation and Characterization of Tissue Resident CD29-Positive Progenitor Cells in Livestock to Generate a Three-Dimensional Meat Bud. Cells, 2021, 10, 2499.	4.1	8
57	Liver Regeneration Using Cultured Liver Bud. Methods in Molecular Biology, 2017, 1597, 207-216.	0.9	5
58	Tumoroid \tilde{A} la carte: Path for personalization. Hepatology, 2018, 68, 1189-1191.	7. 3	3
59	Modeling Human Bile Acid Transport and Synthesis in Stem Cell-Derived Hepatocytes with a Patient-Specific Mutation. Stem Cell Reports, 2021, 16, 309-323.	4.8	3
60	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	17. 5	3
61	POLYseq: A poly(\hat{l}^2 -amino ester)-based vector for multifunctional cellular barcoding. Stem Cell Reports, 2021, 16, 2149-2158.	4.8	3
62	Tropism of cancer stem cells to a specific distant organ. In Vivo, 2014, 28, 361-5.	1.3	3
63	High-Resolution Intravital Imaging for Monitoring the Transplanted Islets in Mice. Transplantation Proceedings, 2014, 46, 1166-1168.	0.6	2
64	Orthotopic foetal lung tissue direct injection into lung showed a preventive effect against paraquat-induced acute lung injury in mice. European Journal of Cardio-thoracic Surgery, 2020, 58, 638-645.	1.4	2
65	Narrative engineering of the liver. Current Opinion in Genetics and Development, 2022, 75, 101925.	3.3	2
66	Generating Mini-Organs in Culture. Current Pathobiology Reports, 2016, 4, 59-68.	3.4	1
67	Anniversary reflections: Inspiring discoveries and the future of the field. Cell Stem Cell, 2022, 29, 879-881.	11.1	1
68	Mechanical characterization system using on-chip probe with wide range actuation. , 2016, , .		0
69	Stiffness-index map based on single cell-spheroid analysis using robot integrated microfluidic chiip. , 2016, , .		0
70	Liver Regeneration Using Cultured Liver Bud., 2017,, 223-235.		0
71	Creativity for a cure. Nature Medicine, 2019, 25, 868-868.	30.7	0
72	Organoid Models of Development and Disease Towards Therapy. Current Human Cell Research and Applications, 2019, , 149-168.	0.1	0

TAKANORI TAKEBE

#	Article	lF	CITATIONS
73	Drug screening against complement disorders using human stem cell-derived endothelium and liver organoids. Journal of Hepatology, 2020, 73, S568-S569.	3.7	O
74	Human organoid for pharmaceutical science. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-SL5.	0.0	0
75	Enabling Factor Theory For Human Well-being. Health Evaluation and Promotion, 2021, 48, 501-510.	0.0	0
76	Enteral ventilation technology to combat severe respiratory failure. Translational and Regulatory Sciences, 2021, 3, 93-97.	0.2	0
77	Synthesis and application of POLYseq for profiling human liver organoids. STAR Protocols, 2021, 2, 100976.	1.2	0