## Cédric R Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740630/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF                                                        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|
| 1  | Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Reports, 2017, 19, 1467-1478.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.4                                                       | 172       |
| 2  | Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires. Frontiers in Immunology, 2018, 9, 224.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8                                                       | 164       |
| 3  | Vanadium Dioxide: A Peierls-Mott Insulator Stable against Disorder. Physical Review Letters, 2012, 108, 256402.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.8                                                       | 156       |
| 4  | Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nature Biomedical Engineering, 2021, 5, 600-612.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.5                                                      | 156       |
| 5  | Strength of correlations in electron- and hole-doped cuprates. Nature Physics, 2010, 6, 574-578.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.7                                                      | 142       |
| 6  | Learning the High-Dimensional Immunogenomic Features That Predict Public and Private Antibody<br>Repertoires. Journal of Immunology, 2017, 199, 2985-2997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                       | 124       |
| 7  | A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Reports, 2021, 34, 108856.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                       | 101       |
| 8  | Orbital Currents in Extended Hubbard Models of High- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:msub><mml:mi>T</mml:mi>c</mml:msub>Cuprate<br/>Superconductors. Physical Review Letters, 2009, 102, 017005.</mml:math<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                                                       | 99        |
| 9  | Apical oxygens and correlation strength in electron- and hole-doped copper oxides. Physical Review B, 2010, 82, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                       | 90        |
| 10 | Ising Transition Driven by Frustration in a 2D Classical Model with Continuous Symmetry. Physical Review Letters, 2003, 91, 177202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.8                                                       | 87        |
| 11 | Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy. Europhysics Letters, 2012, 100, 37001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                       | 85        |
| 12 | Optical weights and waterfalls in doped charge-transfer insulators: A local density approximation<br>and dynamical mean-field theory study of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;&lt; <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext>La </mml:mtext> </mml:mrow> <mml:mrow> <mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math<br> | 3.2<br>v> <mml:mr< td=""><td>62<br/>1&gt;2</td></mml:mr<> | 62<br>1>2 |
| 13 | Physical Review B, 2008, 78, .<br>High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed<br>mutagenesis. Nucleic Acids Research, 2018, 46, 7436-7449.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.5                                                      | 61        |
| 14 | Theory-Guided Synthesis of an Eco-Friendly and Low-Cost Copper Based Sulfide Thermoelectric<br>Material. Journal of Physical Chemistry C, 2016, 120, 27135-27140.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1                                                       | 60        |
| 15 | Enhanced thermoelectric performance of Sn-doped Cu <sub>3</sub> SbS <sub>4</sub> . Journal of<br>Materials Chemistry C, 2018, 6, 8546-8552.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                       | 59        |
| 16 | Approach to a stationary state in a driven Hubbard model coupled to a thermostat. Physical Review B, 2012, 86, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2                                                       | 56        |
| 17 | Dimensional Crossover Driven by an Electric Field. Physical Review Letters, 2012, 108, 086401.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.8                                                       | 52        |
| 18 | immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking. Bioinformatics, 2020, 36, 3594-3596.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1                                                       | 48        |

| #  | Article                                                                                                                                                                                                                                                                                                                                    | IF                               | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|
| 19 | Phase Diagram of a Three-Orbital Model for High- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:n<br>Superconductors. Physical Review Letters, 2014, 112, 117001.</mml:n<br></mml:mrow></mml:msub></mml:mrow></mml:math<br> | 1,7.8<br>1i>c <td>l:mi&gt; </td> | l:mi>     |
| 20 | Magnetism and superconductivity of strongly correlated electrons on the triangular lattice.<br>Physical Review B, 2006, 73, .                                                                                                                                                                                                              | 3.2                              | 42        |
| 21 | Scanning-Tunneling Spectroscopy of Surface-State Electrons Scattered by a Slightly Disordered<br>Two-Dimensional Dilute "Solidâ€ŧ Ce on Ag(111). Physical Review Letters, 2004, 93, 146805.                                                                                                                                                | 7.8                              | 40        |
| 22 | In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs, 2022, 14, 2031482.                                                                                                                                                                                                                    | 5.2                              | 40        |
| 23 | Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases. Nucleic Acids Research, 2007, 35, 5223-5231.                                                                                                                                                                                   | 14.5                             | 39        |
| 24 | Self-energies in itinerant magnets: A focus on Fe and Ni. Physical Review B, 2017, 95, .                                                                                                                                                                                                                                                   | 3.2                              | 39        |
| 25 | Numerical Simulation of Gel Electrophoresis of DNA Knots in Weak and Strong Electric Fields.<br>Biophysical Journal, 2006, 90, 3100-3105.                                                                                                                                                                                                  | 0.5                              | 37        |
| 26 | The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires.<br>Nature Machine Intelligence, 2021, 3, 936-944.                                                                                                                                                                                            | 16.0                             | 35        |
| 27 | Renormalization of myoglobin–ligand binding energetics by quantum many-body effects. Proceedings of the United States of America, 2014, 111, 5790-5795.                                                                                                                                                                                    | 7.1                              | 33        |
| 28 | A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Reveals Age-Related<br>Differences in Convalescent COVID-19 Patients. Frontiers in Immunology, 2021, 12, 701085.                                                                                                                                          | 4.8                              | 33        |
| 29 | Importance of Many-Body Effects in the Kernel of Hemoglobin for Ligand Binding. Physical Review Letters, 2013, 110, 106402.                                                                                                                                                                                                                | 7.8                              | 29        |
| 30 | Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes. NAR Genomics and Bioinformatics, 2021, 3, lqab023.                                                                                                                                                                        | 3.2                              | 27        |
| 31 | Evening out the spin and charge parity to increase \$\${T}_{c}\$\$ in<br>\$\${{m{Sr}}}_{2}{{m{RuO}}}_{4}\$. Communications Physics, 2019, 2, .                                                                                                                                                                                             | 5.3                              | 26        |
| 32 | Augmented hybrid exact-diagonalization solver for dynamical mean field theory. Physical Review B, 2012, 86, .                                                                                                                                                                                                                              | 3.2                              | 23        |
| 33 | Finite-temperature properties of frustrated classical spins coupled to the lattice. Physical Review B, 2005, 72, .                                                                                                                                                                                                                         | 3.2                              | 22        |
| 34 | Individualized VDJ recombination predisposes the available Ig sequence space. Genome Research, 2021, 31, 2209-2224.                                                                                                                                                                                                                        | 5.5                              | 22        |
| 35 | Many-body renormalization of forces in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt; <mml:mi>f</mml:mi> -electron<br/>materials. Physical Review B, 2018, 98, .</mml:math<br>                                                                                                                                            | 3.2                              | 20        |
| 36 | Electron–phonon-driven three-dimensional metallicity in an insulating cuprate. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 6409-6416.                                                                                                                                                   | 7.1                              | 18        |

Cédric R Weber

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural and electronic evolution in the<br>Cu <sub>3</sub> SbS <sub>4</sub> –Cu <sub>3</sub> SnS <sub>4</sub> solid solution. Journal of<br>Materials Chemistry C, 2020, 8, 11508-11516. | 5.5  | 16        |
| 38 | Sedimentation of macroscopic rigid knots and its relation to gel electrophoretic mobility of DNA knots. Scientific Reports, 2013, 3, 1091.                                                  | 3.3  | 14        |
| 39 | SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Reports, 2022, 38, 110242.                                 | 6.4  | 13        |
| 40 | Simulations of electrophoretic collisions of DNA knots with gel obstacles. Journal of Physics<br>Condensed Matter, 2006, 18, S161-S171.                                                     | 1.8  | 11        |
| 41 | Anticollinear magnetic order induced by impurities in the frustrated Heisenberg model of pnictides.<br>Physical Review B, 2012, 86, .                                                       | 3.2  | 11        |
| 42 | Impurity model for non-equilibrium steady states. Physical Review B, 2013, 87, .                                                                                                            | 3.2  | 11        |
| 43 | Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements. Physical Review X, 2018, 8, .                                                                                    | 8.9  | 11        |
| 44 | The Mott to Kondo transition in diluted Kondo superlattices. Communications Physics, 2019, 2, .                                                                                             | 5.3  | 11        |
| 45 | Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials. Carbon, 2022, 191, 255-266.                             | 10.3 | 11        |
| 46 | Bond-order-modulated staggered-flux phase of thetJmodel on a square lattice. Physical Review B, 2006, 74, .                                                                                 | 3.2  | 10        |
| 47 | High-frequency thermoelectric response in correlated electronic systems. Physical Review B, 2011, 84, .                                                                                     | 3.2  | 10        |
| 48 | First-principles study of electronic transport and structural properties of Cu12Sb4S13 in its high-temperature phase. Physical Review Research, 2020, 2, .                                  | 3.6  | 10        |
| 49 | Continuous-time quantum Monte Carlo solver for dynamical mean field theory in the compact<br>Legendre representation. Physical Review B, 2019, 99, .                                        | 3.2  | 9         |
| 50 | Role of the lattice in the light-induced insulator-to-metal transition in vanadium dioxide. Physical<br>Review Research, 2020, 2, .                                                         | 3.6  | 9         |
| 51 | Superexchange mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge.<br>Communications Physics, 2020, 3, .                                                         | 5.3  | 8         |
| 52 | Data-driven dynamical mean-field theory: An error-correction approach to solve the quantum many-body problem using machine learning. Physical Review B, 2021, 104, .                        | 3.2  | 7         |
| 53 | Maximally localized dynamical quantum embedding for solving many-body correlated systems. Nature Computational Science, 2021, 1, 410-420.                                                   | 8.0  | 6         |
| 54 | Calculating dynamical mean-field theory forces in <i>ab initio</i> ultrasoft pseudopotential formalism. Physical Review B, 2021, 104, .                                                     | 3.2  | 6         |

Cédric R Weber

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ONETEP + TOSCAM: Uniting Dynamical Mean Field Theory and Linear-Scaling Density Functional Theory.<br>Journal of Chemical Theory and Computation, 2020, 16, 4899-4911.        | 5.3 | 5         |
| 56 | What controls the critical temperature of high temperature copper oxide superconductors: insights from scanneling tunnelling microscopy. Science Bulletin, 2017, 62, 102-104. | 9.0 | 4         |
| 57 | Tuning topological surface states by cleavage angle in topological crystalline insulators. Physical<br>Review B, 2019, 100, .                                                 | 3.2 | 4         |
| 58 | Nanoscopic time crystal obtained by nonergodic spin dynamics. Physical Review B, 2019, 100, .                                                                                 | 3.2 | 4         |
| 59 | Electronic Structure Correspondence of Singlet-Triplet Scale Separation in Strained Sr2RuO4. Applied Sciences (Switzerland), 2021, 11, 508.                                   | 2.5 | 4         |
| 60 | Study of disorder in pulsed laser deposited double perovskite oxides by first-principle structure prediction. Npj Computational Materials, 2021, 7, .                         | 8.7 | 4         |
| 61 | Ultrafast Electron Dynamics in Magnetic Thin Films. Applied Sciences (Switzerland), 2021, 11, 9753.                                                                           | 2.5 | 4         |
| 62 | High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures. Applied Sciences<br>(Switzerland), 2022, 12, 874.                                         | 2.5 | 4         |
| 63 | Unifying guiding principles for designing optimized superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .            | 7.1 | 3         |
| 64 | Checkerboard order in the – model on the square lattice. Journal of Magnetism and Magnetic<br>Materials, 2007, 310, 523-525.                                                  | 2.3 | 2         |
| 65 | Computational materials discovery for lanthanide hydrides at high pressure for high temperature superconductivity. Physical Review Research, 2022, 4, .                       | 3.6 | 2         |
| 66 | From Slater to Mott physics by epitaxially engineering electronic correlations in oxide interfaces. Npj<br>Computational Materials, 2021, 7, .                                | 8.7 | 1         |
| 67 | Emergence of long-range magnetic order stabilized by magnetic impurities in pnictides. Physical Review<br>B, 2019, 99, .                                                      | 3.2 | Ο         |
| 68 | Exploring the Effect of the Number of Hydrogen Atoms on the Properties of Lanthanide Hydrides by DMFT. Applied Sciences (Switzerland), 2022, 12, 3498.                        | 2.5 | 0         |
| 69 | Many-Body Study of Iron(III)-Bound Human Serum Transferrin. Journal of Physical Chemistry Letters, 2022, , 4419-4425.                                                         | 4.6 | 0         |