Brigitte Meunier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5740228/publications.pdf

Version: 2024-02-01

		147801	161849
103	3,354	31	54
papers	citations	h-index	g-index
110	110	110	3132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Nonsense Mutation in COQ9 Causes Autosomal-Recessive Neonatal-Onset Primary Coenzyme Q10 Deficiency: A Potentially Treatable Form of Mitochondrial Disease. American Journal of Human Genetics, 2009, 84, 558-566.	6.2	206
2	Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15936-15941.	7.1	173
3	Molecular Basis for Atovaquone Binding to the Cytochrome bc 1 Complex. Journal of Biological Chemistry, 2003, 278, 31312-31318.	3.4	146
4	A Missense Mutation of Cytochrome Oxidase Subunit II Causes Defective Assembly and Myopathy. American Journal of Human Genetics, 1999, 65, 1030-1039.	6.2	131
5	Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1. Nature Structural and Molecular Biology, 2019, 26, 78-83.	8.2	121
6	Molecular basis of resistance to cytochrome <i>bc</i> ₁ inhibitors. FEMS Yeast Research, 2008, 8, 183-192.	2.3	117
7	New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry, 1995, 34, 1076-1083.	2.5	108
8	Effects of Mutation of the Conserved Lysine-362 in CytochromecOxidase fromRhodobacter sphaeroidesâ€. Biochemistry, 1997, 36, 14456-14464.	2.5	95
9	A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast. FEBS Journal, 2005, 272, 3583-3592.	4.7	88
10	Formation of the Redox Cofactor Centers during Cox1 Maturation in Yeast Cytochrome Oxidase. Molecular and Cellular Biology, 2010, 30, 1004-1017.	2.3	88
11	Acridinediones: Selective and Potent Inhibitors of the Malaria Parasite Mitochondrial bc1 Complex. Molecular Pharmacology, 2008, 73, 1347-1355.	2.3	85
12	Modeling the Qo site of crop pathogens in Saccharomyces cerevisiae cytochrome b. FEBS Journal, 2004, 271, 2264-2271.	0.2	79
13	Cytochrome b Mutations That Modify the Ubiquinol-binding Pocket of the Cytochrome bc1 Complex and Confer Anti-malarial Drug Resistance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 17142-17148.	3.4	73
14	Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochromeb using yeast as a model system. Pest Management Science, 2005, 61, 973-978.	3.4	72
15	Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Letters, 1995, 375, 5-10.	2.8	68
16	Molecular Basis for Atovaquone Resistance in Pneumocystis jirovecii Modeled in the Cytochrome bc1Complex of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 2817-2824.	3.4	68
17	Recapitulation in Saccharomyces cerevisiae of Cytochrome b Mutations Conferring Resistance to Atovaquone in Pneumocystis jiroveci. Antimicrobial Agents and Chemotherapy, 2003, 47, 2725-2731.	3.2	65
18	Assembly factors monitor sequential hemylation of cytochrome <i>b</i> to regulate mitochondrial translation. Journal of Cell Biology, 2014, 205, 511-524.	5.2	65

#	Article	IF	Citations
19	Human Disease-related Mutations in Cytochrome b Studied in Yeast. Journal of Biological Chemistry, 2004, 279, 12951-12958.	3.4	63
20	Mutational Analysis of Cytochrome b at the Ubiquinol Oxidation Site of Yeast Complex III. Journal of Biological Chemistry, 2007, 282, 3977-3988.	3.4	58
21	HDQ, a Potent Inhibitor of Plasmodium falciparum Proliferation, Binds to the Quinone Reduction Site of the Cytochrome bc 1 Complex. Antimicrobial Agents and Chemotherapy, 2012, 56, 3739-3747.	3.2	53
22	Yeast cytochrome c oxidase: A model system to study mitochondrial forms of the haem–copper oxidase superfamily. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 620-628.	1.0	52
23	Effects of mutations in mitochondrial cytochromebin yeast and man. FEBS Journal, 2001, 268, 1155-1162.	0.2	51
24	Probing the Role of E272 in Quinol Oxidation of Mitochondrial Complex III. Biochemistry, 2006, 45, 9042-9052.	2.5	49
25	Coupling of charge and proton movement in cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 91-95.	1.0	48
26	Disruption of the interaction between the Rieske iron-sulfur protein and cytochrome b in the yeast bc1 complex owing to a human disease-associated mutation within cytochrome b. FEBS Journal, 2004, 271, 1292-1298.	0.2	40
27	The cytochrome <i>bc</i> ₁ complex as an antipathogenic target. FEBS Letters, 2020, 594, 2935-2952.	2.8	40
28	Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9329-9337.	7.1	40
29	Transcriptional response to nitrosative stress in Saccharomyces cerevisiae. Yeast, 2006, 23, 519-535.	1.7	38
30	Effects of Mutation of the Conserved Glutamic Acid-286 in Subunit I of Cytochrome c Oxidase from Rhodobacter sphaeroides. Biochemistry, 1999, 38, 5248-5255.	2.5	37
31	Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochemical Journal, 2001, 354, 407-412.	3.7	36
32	MtDNA mutations associated with sideroblastic anaemia cause a defect of mitochondrial cytochrome c oxidase. FEBS Journal, 1998, 258, 132-138.	0.2	33
33	A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9349-9355.	7.1	32
34	Analysis of COX2 mutants reveals cytochrome oxidase subassemblies in yeast. Biochemical Journal, 2005, 390, 703-708.	3.7	31
35	Deleterious Effect of the Q _o Inhibitor Compound Resistance-Conferring Mutation G143A in the Intron-Containing Cytochrome <i>b</i> Gene and Mechanisms for Bypassing It. Applied and Environmental Microbiology, 2011, 77, 2088-2093.	3.1	30
36	The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth. Redox Biology, 2016, 7, 21-29.	9.0	30

#	Article	IF	CITATIONS
37	The antimalarial compound <scp>ELQ</scp> â€400 is an unusual inhibitor of the <i>bc</i> ₁ complex, targeting both <i>Q</i> _o and <i>Q</i> _i sites. FEBS Letters, 2018, 592, 1346-1356.	2.8	30
38	Construction of histidine-tagged yeast mitochondrial cytochrome <i>c</i> oxidase for facile purification of mutant forms. Biochemical Journal, 2012, 444, 199-204.	3.7	29
39	Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochemical Journal, 2001, 354, 407.	3.7	28
40	Rapid screening of cytochromes of respiratory mutants of Saccharomyces cerevisiae. Application to the selection of strains containing novel forms of cytochrome-c oxidase. FEBS Journal, 1993, 213, 137-145.	0.2	26
41	Genetic screening in Saccharomyces cerevisiae for large numbers of mitochondrial point mutations which affect structure and function of catalytic subunits of cytochrome-c oxidase. FEBS Journal, 1993, 213, 129-135.	0.2	25
42	The cytochrome bc complex inhibitor Ametoctradin has an unusual binding mode. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 567-576.	1.0	25
43	Is Cytochrome <i>b</i> Glutamic Acid 272 a Quinol Binding Residue in the <i>bc</i> ₁ Complex of <i>Saccharomyces cerevisiae</i> . Biochemistry, 2008, 47, 2357-2368.</td <td>2.5</td> <td>24</td>	2.5	24
44	Laser Photolysis Behavior of Ferrous Horseradish Peroxidase with Carbon Monoxide and Cyanide: Effects of Mutations in the Distal Heme Pocket. Biochemistry, 1995, 34, 14687-14692.	2.5	23
45	Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro-Oncology, 2015, 17, 942-952.	1.2	23
46	Mitochondrial complex III Q _i â€site inhibitor resistance mutations found in laboratory selected mutants and field isolates. Pest Management Science, 2019, 75, 2107-2114.	3.4	23
47	Human Mitochondrial Cytochrome b Variants Studied in Yeast: Not All Are Silent Polymorphisms. Human Mutation, 2016, 37, 933-941.	2.5	22
48	Second-site reversion analysis is not a reliable method to determine distances in membrane proteins: an assessment using mutations in yeast cytochrome c oxidase subunits I and II 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 283, 727-730.	4.2	21
49	Mutations of cytochrome c oxidase subunits 1 and 3 in Saccharomyces cerevisiae: assembly defect and compensation. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1554, 101-107.	1.0	21
50	Disease-related mutations in cytochrome c oxidase studied in yeast and bacterial models. FEBS Journal, 2003, 270, 1222-1230.	0.2	21
51	Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants. Nucleic Acids Research, 2006, 34, e95-e95.	14.5	21
52	Reconstructing the Qo Site of Plasmodium falciparum bc1 Complex in the Yeast Enzyme. PLoS ONE, 2013, 8, e71726.	2.5	18
53	Additive effect of nuclear and mitochondrial mutations in a patient with mitochondrial encephalomyopathy. Human Molecular Genetics, 2015, 24, 3248-3256.	2.9	18
54	Two homologous introns from related Saccharomyces species differ in their mobility. Gene, 1994, 139, 1-7.	2.2	16

#	Article	IF	Citations
55	Effects of mutation of residue I67 on redox-linked protonation processes in yeast cytochrome c oxidase. Biochemical Journal, 1998, 330, 1197-1200.	3.7	16
56	QO Site Deficiency Can Be Compensated by Extragenic Mutations in the Hinge Region of the Iron-Sulfur Protein in the bc1 Complex of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 24203-24211.	3.4	16
57	Comparisons of subunit 5A and 5B isoenzymes of yeast cytochrome <i>c</i> oxidase. Biochemical Journal, 2014, 464, 335-342.	3.7	16
58	Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease. American Journal of Human Genetics, 2020, 106, 256-263.	6.2	16
59	Effect of Inhibition of the bc1 Complex on Gene Expression Profile in Yeast. Journal of Biological Chemistry, 2005, 280, 29743-29749.	3.4	15
60	Redox- and anion-linked protonation sites in horseradish peroxidase: analysis of distal haem pocket mutants. Biochemical Journal, 1998, 330, 303-309.	3.7	14
61	Insight into topological and functional relationships of cytochromecoxidase subunit I of Saccharomyces cerevisiaeby means of intragenic complementation. FEBS Letters, 1993, 321, 159-162.	2.8	13
62	Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome. Frontiers in Physiology, 2017, 8, 463.	2.8	13
63	Directed evolution predicts cytochrome <i>b</i> àꀉ <scp>G37V</scp> target site modification as probable adaptive mechanism towards the <scp>Qil</scp> fungicide fenpicoxamid in <i>Zymoseptoria tritici</i> Environmental Microbiology, 2022, 24, 1117-1132.	3.8	13
64	Structural and functional analysis of deficient mutants in subunit I of cytochrome c oxidase from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1321, 79-92.	1.0	12
65	Quantitation and Characterization of CytochromecOxidase in Complex Systems. Analytical Biochemistry, 1998, 260, 237-243.	2.4	12
66	Saccharomyces cerevisiae-Based Mutational Analysis of the <i>bc</i> ₁ Complex Q _o Site Residue 279 To Study the Trade-Off between Atovaquone Resistance and Function. Antimicrobial Agents and Chemotherapy, 2015, 59, 4053-4058.	3.2	12
67	Investigating the mode of action of the redox-active antimalarial drug plasmodione using the yeast model. Free Radical Biology and Medicine, 2019, 141, 269-278.	2.9	12
68	Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118661.	4.1	12
69	Reaction of wild-type and Glu243Asp variant yeast cytochrome c oxidase with O2. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1012-1018.	1.0	11
70	The H channel is not a proton transfer path in yeast cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 717-723.	1.0	10
71	Integrated Approach Reveals Role of Mitochondrial Germ-Line Mutation F18L in Respiratory Chain, Oxidative Alterations, Drug Sensitivity, and Patient Prognosis in Glioblastoma. International Journal of Molecular Sciences, 2019, 20, 3364.	4.1	10
72	Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase. Scientific Reports, 2019, 9, 20207.	3.3	10

#	Article	IF	CITATIONS
73	Random deficiency mutations and reversions in the cytochrome c oxidase subunits I, II and III of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 112-115.	1.0	9
74	Insight into the interactions between subunits I and II of the cytochromecoxidase of the yeastSaccharomyces cerevisiaeby means of extragenic complementation. FEBS Letters, 1993, 335, 338-340.	2.8	8
75	Photolysis of the cyanide adduct of ferrous horseradish peroxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1318, 235-245.	1.0	7
76	Assignment of the CO-sensitive carboxyl group in mitochondrial forms of cytochrome c oxidase using yeast mutants. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1921-1924.	1.0	7
77	Multiple Defects in the Respiratory Chain Lead to the Repression of Genes Encoding Components of the Respiratory Chain and TCA Cycle Enzymes. Journal of Molecular Biology, 2009, 387, 1081-1091.	4.2	6
78	Increased diuron resistance in the joint expression of mutations located at the DIU2, DIU3 and DIU4 loci of Saccharomyces cerevisiae. Current Genetics, 1989, 15, 121-127.	1.7	5
79	Two nuclearly inherited loci conferring increased diuron resistance to NADH oxidase in Saccharomyces cerevisiae. Current Genetics, 1989, 15, 31-38.	1.7	5
80	An in silico approach combined with in vivo experiments enables the identification of a new protein whose overexpression can compensate for specific respiratory defects in Saccharomyces cerevisiae. BMC Systems Biology, 2011, 5, 173.	3.0	5
81	Interplay between the hinge region of iron sulphur protein and the Qo site in the bc1 complex — Analysis of Plasmodium-like mutations in the yeast enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1487-1494.	1.0	5
82	A role for the succinate dehydrogenase in the mode of action of the redox-active antimalarial drug, plasmodione. Free Radical Biology and Medicine, 2021, 162, 533-541.	2.9	5
83	Determination of H+/e ratios in mitochondrial yeast cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e100.	1.0	4
84	Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 705-711.	1.0	4
85	Electron Transfer Coupled to Conformational Dynamics in Cell Respiration. Frontiers in Molecular Biosciences, 2021, 8, 711436.	3 . 5	4
86	Interaction of picolinamide fungicide primary metabolites <scp>UKâ€2A</scp> and <scp>CAS</scp> â€649 with the cytochrome <i>bc</i> ₁ complex <scp>Qi</scp> site: mutation effects and modelling in <scp><i>Saccharomyces cerevisiae</i></scp> . Pest Management Science, 2022, 78, 2657-2666.	3.4	4
87	The topology of CuA in relation to the other metal centres in cytochrome-c oxidase of Saccharomyces cerevisiae as determined by analysis of second-site reversions. BBA - Proteins and Proteomics, 1995, 1253, 13-15.	2.1	3
88	Functional mapping reveals the importance of yeast cytochrome b C-terminal region in assembly and function of the bc 1 complex. FEBS Letters, 1997, 404, 51-55.	2.8	3
89	Design, synthesis, and biological evaluation of multiple targeting antimalarials. Acta Pharmaceutica Sinica B, 2021, 11, 2900-2913.	12.0	3
90	Nuclearly inherited diuron-resistant mutions conferring a deficiency in the NADH - or succinate - ubiquinone oxidoreductase actitiy in Saccharomyces cerevisiae. FEBS Journal, 1989, 184, 651-656.	0.2	2

#	Article	IF	Citations
91	A Rapid in Vivo Colorimetric Library Screen for Inhibitors of Microbial Respiration. ACS Chemical Biology, 2012, 7, 1659-1665.	3.4	2
92	Mutational analysis of the Qi-site proton pathway in yeast cytochrome bc1 complex. Biochemical and Biophysical Research Communications, 2020, 523, 615-619.	2.1	2
93	Revisiting the mode of action of the antimalarial proguanil using the yeast model. Biochemical and Biophysical Research Communications, 2021, 534, 94-98.	2.1	2
94	CO recombination as a probe of the Fe/Cu binuclear centre of terminal protonmotive oxidases. Biochemical Society Transactions, 1993, 21, 344S-344S.	3.4	1
95	The TKFC Ala185Thr variant, reported as †null†for fructose metabolism, is fully active as triokinase. FEBS Letters, 2022, , .	2.8	1
96	Two homologous introns from related Saccharomyces species differ in their mobility. Gene, 1994, 144, 149.	2.2	0
97	Yeast as a eukaryotic model for inhibitor resistance and dysfunction of the bc1 complex. Biochemical Society Transactions, 1999, 27, A127-A127.	3.4	0
98	S13.18 Light-activating the respiratory chain: Toward the time-resolved studies of the electron transfer chain in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S92-S93.	1.0	0
99	Turning the mitochondrion into a chloroplast: the light-activation of the respiratory function in Saccharomyces cerevisiae allows its time-resolved analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 24.	1.0	0
100	Kinetic comparisons of 5A and 5B isozymes of yeast cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e97.	1.0	0
101	Coupling of Ion and Charge Movements: From Peroxidases to Protonmotive Oxidases. , 1998, , 40-46.		0
102	Coupling of Proton Transfer to Oxygen Chemistry in Cytochrome Oxidase: the Roles of Residues I67 and E243., 1998,, 106-111.		0
103	Abstract 3042: A novel integrated approach for deciphering the mitochondrial mutation enigma in glioblastoma. , $2015, $, .		0