
Yanhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5739847/publications.pdf Version: 2024-02-01

YANHONG LL

#	Article	IF	CITATIONS
1	Catalytic Cycle of <i>Neisseria meningitidis</i> CMP-Sialic Acid Synthetase Illustrated by High-Resolution Protein Crystallography. Biochemistry, 2020, 59, 3157-3168.	2.5	5
2	<i>EnterococcusÂfaecalis</i> α1–2â€mannosidase (EfManâ€I): an efficient catalyst for glycoprotein Nâ€glycan modification. FEBS Letters, 2020, 594, 439-451.	2.8	9
3	Biochemical characterization of Helicobacter pylori α1–3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydrate Research, 2019, 480, 1-6.	2.3	23
4	Regioselective One-Pot Multienzyme (OPME) Chemoenzymatic Strategies for Systematic Synthesis of Sialyl Core 2 Glycans. ACS Catalysis, 2019, 9, 211-215.	11.2	18
5	A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Diâ€ <i>N</i> â€∎cetyllegionaminic Acid ontaining Glycosides. Angewandte Chemie, 2018, 130, 2979-2983.	2.0	7
6	A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Diâ€< i>Nâ€acetyllegionaminic Acid ontaining Glycosides. Angewandte Chemie - International Edition, 2018, 57, 2929-2933.	13.8	28
7	Sialidase-Catalyzed One-Pot Multienzyme (OPME) Synthesis of Sialidase Transition-State Analogue Inhibitors. ACS Catalysis, 2018, 8, 43-47.	11.2	19
8	Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Bioorganic and Medicinal Chemistry, 2018, 26, 5751-5757.	3.0	14
9	Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Organic and Biomolecular Chemistry, 2018, 16, 4076-4080.	2.8	41
10	<i>Streptococcus pneumoniae</i> Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. Journal of Organic Chemistry, 2018, 83, 10798-10804.	3.2	14
11	Production of Glycopeptide Derivatives for Exploring Substrate Specificity of Human OGA Toward Sugar Moiety. Frontiers in Chemistry, 2018, 6, 646.	3.6	8
12	Chemoenzymatic synthesis of para-nitrophenol (pNP)-tagged α2–8-sialosides and high-throughput substrate specificity studies of α2–8-sialidases. Organic and Biomolecular Chemistry, 2017, 15, 160-167.	2.8	20
13	Labeling glycans on living cells by a chemoenzymatic glycoengineering approach. Biology Open, 2017, 6, 923-927.	1.2	4
14	H. pylori α1–3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chemical Communications, 2017, 53, 11012-11015.	4.1	53
15	Chemoenzymatic synthesis of Neu5Ac9NAc-containing α2–3- and α2–6-linked sialosides and their use for sialidase substrate specificity studies. Carbohydrate Research, 2017, 451, 51-58.	2.3	26
16	Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc ₄ βCer. Chemical Communications, 2017, 53, 8280-8283.	4.1	24
17	High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnology Letters, 2017, 39, 123-131.	2.2	23
18	Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chemical Science, 2016, 7, 2827-2831.	7.4	31

Yanhong Li

#	Article	IF	CITATIONS
19	Effective one-pot multienzyme (OPME) synthesis of monotreme milk oligosaccharides and other sialosides containing 4-O-acetyl sialic acid. Organic and Biomolecular Chemistry, 2016, 14, 8586-8597.	2.8	22
20	Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. Journal of Organic Chemistry, 2016, 81, 10809-10824.	3.2	54
21	ldentification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Organic and Biomolecular Chemistry, 2016, 14, 11106-11116.	2.8	42
22	Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorganic and Medicinal Chemistry, 2016, 24, 1696-1705.	3.0	46
23	The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus α1–2-fucosyltransferase. Chemical Communications, 2016, 52, 3899-3902.	4.1	58
24	Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform. Biomolecules, 2015, 5, 1480-1498.	4.0	44
25	A Photobacterium sp. α2–6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydrate Research, 2015, 408, 127-133.	2.3	21
26	Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chemical Science, 2015, 6, 5652-5661.	7.4	114
27	Glycoproteins: Chemical Features and Biological Roles. , 2015, , 3-33.		0
28	Crystal structures of sialyltransferase from <i>Photobacterium damselae</i> . FEBS Letters, 2014, 588, 4720-4729.	2.8	21
29	Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Applied Microbiology and Biotechnology, 2014, 98, 1127-1134.	3.6	20
30	Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies. Carbohydrate Research, 2014, 389, 100-111.	2.3	26
31	One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorganic and Medicinal Chemistry, 2013, 21, 4778-4785.	3.0	45
32	Oneâ€Pot Multienzyme Synthesis of Lewis x and Sialyl Lewis x Antigens. Current Protocols in Chemical Biology, 2012, 4, 233-247.	1.7	19
33	Probe sialidase substrate specificity using chemoenzymatically synthesized sialosides containing C9-modified sialic acid. Chemical Communications, 2012, 48, 3357.	4.1	40
34	A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating Lewis ^x . ACS Chemical Biology, 2012, 7, 1232-1240.	3.4	135
35	Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chemical Communications, 2012, 48, 2728.	4.1	114
36	PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2–3-sialyltransferase. Applied Microbiology and Biotechnology, 2012, 94, 977-985.	3.6	37

Yanhong Li

#	Article	IF	CITATIONS
37	Sialic acid metabolism and sialyltransferases: natural functions and applications. Applied Microbiology and Biotechnology, 2012, 94, 887-905.	3.6	214
38	Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity. Applied Microbiology and Biotechnology, 2012, 93, 2411-2423.	3.6	37
39	Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chemical Communications, 2011, 47, 8691.	4.1	43
40	Decreasing the sialidase activity of multifunctional Pasteurella multocidaα2–3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Molecular BioSystems, 2011, 7, 3021.	2.9	46
41	One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chemical Communications, 2011, 47, 10815.	4.1	97
42	Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Molecular BioSystems, 2011, 7, 1060.	2.9	53
43	Substrate Promiscuity of N-Acetylhexosamine 1-Kinases. Molecules, 2011, 16, 6396-6407.	3.8	74
44	High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses. Virology, 2011, 415, 12-19.	2.4	32
45	An Infant-associated Bacterial Commensal Utilizes Breast Milk Sialyloligosaccharides. Journal of Biological Chemistry, 2011, 286, 11909-11918.	3.4	164
46	Cloning and characterization of a viral α2–3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology, 2011, 21, 387-396.	2.5	30
47	Highly efficient chemoenzymatic synthesis of β1–3-linked galactosides. Chemical Communications, 2010, 46, 7507.	4.1	72
48	Remodeling bacterial polysaccharides by metabolic pathway engineering. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4207-4212.	7.1	107
49	Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Applied Microbiology and Biotechnology, 2008, 79, 963-70.	3.6	108
50	Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydrate Research, 2008, 343, 2863-2869.	2.3	36
51	Multifunctionality of Campylobacter jejuni sialyltransferase CstII: Characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology, 2008, 18, 686-697.	2.5	80
52	The Hd0053 gene of Haemophilus ducreyi encodes an α2,3-sialyltransferase. Biochemical and Biophysical Research Communications, 2007, 361, 555-560.	2.1	16