M Lienhard Schmitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5738466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p38 and Extracellular Signal-regulated Kinase Mitogen-activated Protein Kinase Pathways Are Required for Nuclear Factor. ¹ ® p65 Transactivation Mediated by Tumor Necrosis Factor. Journal of Biological Chemistry, 1998, 273, 3285-3290.	3.4	643
2	Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nature Cell Biology, 2002, 4, 1-10.	10.3	554
3	Glucocorticoid-mediated repression of nuclear factor-κBdependent transcription involves direct interference with transactivation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13504-13509.	7.1	361
4	Sesquiterpene Lactones Specifically Inhibit Activation of NF-κB by Preventing the Degradation of IκB-α and IκB-β. Journal of Biological Chemistry, 1998, 273, 1288-1297.	3.4	326
5	Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-1 ^e B at Serine 536 is Mediated by Multiple Protein Kinases Including IÎ [®] B Kinase (IKK)-α, IKKÎ ² , IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription. Journal of Biological Chemistry,	3.4	323
6	2004, 279, 55633-55643. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene, 1999, 18, 747-757.	5.9	300
7	Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-κB. FEBS Letters, 1997, 402, 85-90.	2.8	290
8	The Dual Function Cytokine IL-33 Interacts with the Transcription Factor NF-κB To Dampen NF-κB–Stimulated Gene Transcription. Journal of Immunology, 2011, 187, 1609-1616.	0.8	285
9	The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. Journal of Immunology, 1999, 163, 5617-23.	0.8	275
10	Activation of Transcription Factor NF-κB and p38 Mitogen-activated Protein Kinase Is Mediated by Distinct and Separate Stress Effector Pathways. Journal of Biological Chemistry, 1997, 272, 12422-12429.	3.4	229
11	The pro- or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. FEBS Journal, 2000, 267, 3828-3835.	0.2	224
12	lκB-independent control of NF-κB activity by modulatory phosphorylations. Trends in Biochemical Sciences, 2001, 26, 186-190.	7.5	220
13	NF-κB: A Multifaceted Transcription Factor Regulated at Several Levels. ChemBioChem, 2004, 5, 1348-1358.	2.6	220
14	The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Research, 2013, 41, 90-109.	14.5	218
15	Phosphorylation of Serine 468 by GSK-3β Negatively Regulates Basal p65 NF-κB Activity. Journal of Biological Chemistry, 2004, 279, 49571-49574.	3.4	213
16	Transient and Selective NF-κB p65 Serine 536 Phosphorylation Induced by T Cell Costimulation Is Mediated by IκB Kinase β and Controls the Kinetics of p65 Nuclear Import. Journal of Immunology, 2004, 172, 6336-6344.	0.8	205
17	Sex reversal by loss of the C–terminal transactivation domain of human SOX9. Nature Genetics, 1996, 13, 230-232.	21.4	194
18	Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Human Molecular Genetics, 1997, 6, 91-98.	2.9	175

#	Article	IF	CITATIONS
19	Functional architecture of the cell nucleus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2041-2043.	4.1	158
20	Transactivation Domain 2 (TA2) of p65 NF-κB. Journal of Biological Chemistry, 1995, 270, 15576-15584.	3.4	154
21	Phosphorylation of NFâ€ÎºB p65 at Ser468 controls its COMMD1â€dependent ubiquitination and target geneâ€specific proteasomal elimination. EMBO Reports, 2009, 10, 381-386.	4.5	149
22	SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Scientific Reports, 2016, 6, 26509.	3.3	149
23	Enhancement of T Cell Receptor Signaling by a Mild Oxidative Shift in the Intracellular Thiol Pool. Journal of Immunology, 2000, 165, 4319-4328.	0.8	148
24	Interaction of the COOH-terminal Transactivation Domain of p65 NF-ήB with TATA-binding Protein, Transcription Factor IIB, and Coactivators. Journal of Biological Chemistry, 1995, 270, 7219-7226.	3.4	143
25	Autoregulatory feedback loops terminating the NF-κB response. Trends in Biochemical Sciences, 2009, 34, 128-135.	7.5	141
26	NF-κB Inhibitors for the Treatment of Inflammatory Diseases and Cancer. Current Medicinal Chemistry, 2007, 14, 367-376.	2.4	140
27	An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature Cell Biology, 2009, 11, 85-91.	10.3	129
28	Cyclin-Dependent Kinase 6 Is a Chromatin-Bound Cofactor for NF-κB-Dependent Gene Expression. Molecular Cell, 2014, 53, 193-208.	9.7	129
29	HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Research, 2003, 63, 8271-7.	0.9	129
30	Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO Journal, 2006, 25, 3955-3965.	7.8	124
31	Phosphorylation-Dependent Control of Pc2 SUMO E3 Ligase Activity by Its Substrate Protein HIPK2. Molecular Cell, 2006, 24, 77-89.	9.7	122
32	HIPK2, a Versatile Switchboard Regulating the Transcription Machinery and Cell Death. Cell Cycle, 2007, 6, 139-143.	2.6	122
33	Proteins controlling the nuclear uptake of NF-κB, Rel and dorsal. Trends in Cell Biology, 1991, 1, 130-137.	7.9	115
34	Inducible Phosphorylation of NF-κB p65 at Serine 468 by T Cell Costimulation Is Mediated by IKKϵ. Journal of Biological Chemistry, 2006, 281, 6175-6183.	3.4	113
35	Distinct Domains of the RelA NF-κB Subunit Are Required for Negative Cross-talk and Direct Interaction with the Glucocorticoid Receptor. Journal of Biological Chemistry, 1997, 272, 22278-22284.	3.4	111
36	PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Research, 2003, 63, 4310-4.	0.9	110

#	Article	IF	CITATIONS
37	The Human Papillomavirus Oncoprotein E7 Attenuates NF-κB Activation by Targeting the lκB Kinase Complex. Journal of Biological Chemistry, 2002, 277, 25576-25582.	3.4	108
38	Specification of the NF-κB transcriptional response by p65 phosphorylation and TNF-induced nuclear translocation of IKKε. Nucleic Acids Research, 2010, 38, 6029-6044.	14.5	107
39	Mixed-Lineage Kinase 3 Delivers CD3/CD28-Derived Signals into the lκB Kinase Complex. Molecular and Cellular Biology, 2000, 20, 2556-2568.	2.3	105
40	Co-stimulatory effect of nitric oxide on endothelial NF-κB implies a physiological self-amplifying mechanism. European Journal of Immunology, 1998, 28, 2276-2282.	2.9	101
41	A Redox-Regulated SUMO/Acetylation Switch of HIPK2 Controls the Survival Threshold to Oxidative Stress. Molecular Cell, 2012, 46, 472-483.	9.7	100
42	Repression of NF-κB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene, 1999, 18, 3213-3225.	5.9	98
43	The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-κB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines, 2018, 6, 58.	3.2	94
44	Critical role of nuclear factorâ€ĤB and stressâ€activated protein kinases in steroid unresponsiveness. FASEB Journal, 2002, 16, 1-19.	0.5	92
45	The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathogens, 2017, 13, e1006286.	4.7	89
46	Tyrosine-phosphorylated Vav1 as a Point of Integration for T-cell Receptor- and CD28-mediated Activation of JNK, p38, and Interleukin-2 Transcription. Journal of Biological Chemistry, 2000, 275, 18160-18171.	3.4	86
47	Incensole Acetate, a Novel Anti-Inflammatory Compound Isolated from <i>Boswellia</i> Resin, Inhibits Nuclear Factor-κB Activation. Molecular Pharmacology, 2007, 72, 1657-1664.	2.3	83
48	Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2165-2175.	4.1	81
49	SUMOylation-Dependent Localization of IKKÉ› in PML Nuclear Bodies Is Essential for Protection against DNA-Damage-Triggered Cell Death. Molecular Cell, 2010, 37, 503-515.	9.7	78
50	The NF-kB Pathway as a Potential Target for Autoimmune Disease Therapy. Current Pharmaceutical Design, 2004, 10, 2827-2837.	1.9	75
51	Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends in Pharmacological Sciences, 2016, 37, 101-113.	8.7	75
52	Multi-Step Activation of NF-Î $^{\circ}$ B/Rel Transcription Factors. Immunobiology, 1995, 193, 116-127.	1.9	73
53	Cyclin-Dependent Kinase 6 Phosphorylates NF-ήB P65 at Serine 536 and Contributes to the Regulation of Inflammatory Gene Expression. PLoS ONE, 2012, 7, e51847.	2.5	71
54	Regulation of NF-κB activity by competition between RelA acetylation and ubiquitination. Oncogene, 2012, 31, 611-623.	5.9	70

#	Article	IF	CITATIONS
55	Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO Journal, 2006, 25, 1883-1894.	7.8	69
56	Hypericin as a Non-Antioxidant Inhibitor of NF-κB. Planta Medica, 1999, 65, 297-300.	1.3	68
57	Cross-talk between steroids and NF-κB: what language?. Trends in Biochemical Sciences, 1998, 23, 233-235.	7.5	67
58	NFâ \in Ä,B activation pathways induced by T cell costimulation. FASEB Journal, 2003, 17, 2187-2193.	0.5	67
59	Inhibition of Mitosis by Glycopeptide Dendrimer Conjugates of Colchicine. Chemistry - A European Journal, 2005, 11, 3941-3950.	3.3	67
60	The K252a Derivatives, Inhibitors for the PAK/MLK Kinase Family, Selectively Block the Growth of HAS Transformants. Cancer Journal (Sudbury, Mass), 2002, 8, 328-336.	2.0	65
61	The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO Journal, 2010, 29, 3750-3761.	7.8	65
62	The Marine Product Cephalostatin 1 Activates an Endoplasmic Reticulum Stress-specific and Apoptosome-independent Apoptotic Signaling Pathway. Journal of Biological Chemistry, 2006, 281, 33078-33086.	3.4	63
63	Incensole Acetate: A Novel Neuroprotective Agent Isolated from <i>Boswellia Carterii</i> . Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1341-1352.	4.3	63
64	The intricate interplay between RNA viruses and NF-κB. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2754-2764.	4.1	60
65	HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Journal of Molecular Cell Biology, 2013, 5, 27-38.	3.3	59
66	Vav Synergizes with Protein Kinase Cl $$ to Mediate IL-4 Gene Expression in Response to CD28 Costimulation in T Cells. Journal of Immunology, 2000, 164, 3829-3836.	0.8	54
67	Multi-level inhibition of coronavirus replication by chemical ER stress. Nature Communications, 2021, 12, 5536.	12.8	54
68	Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. Journal of Allergy and Clinical Immunology, 2020, 146, 694-705.	2.9	51
69	Various glucocorticoids differ in their ability to induce gene expression, apoptosis and to repress NFâ€₽Bâ€dependent transcription. FEBS Letters, 1998, 441, 441-446.	2.8	50
70	Controlling NF-κB activation in T cells by costimulatory receptors. Cell Death and Differentiation, 2006, 13, 834-842.	11.2	50
71	The cytokine-induced conformational switch of nuclear factor ΰB p65 is mediated by p65 phosphorylation. Biochemical Journal, 2014, 457, 401-413.	3.7	49
72	Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways. Journal of Molecular Cell Biology, 2012, 4, 316-330.	3.3	48

#	Article	IF	CITATIONS
73	Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. Journal of Cellular Biochemistry, 2007, 100, 865-874.	2.6	46
74	Tumor Necrosis Factor-α-induced Cell Killing and Activation of Transcription Factor NF-κB Are Uncoupled in L929 Cells. Journal of Biological Chemistry, 1998, 273, 18117-18121.	3.4	45
75	Synergistic Activation of NF-κB by Functional Cooperation between Vav and PKCÎ, in T Lymphocytes. Journal of Biological Chemistry, 2000, 275, 24547-24551.	3.4	43
76	Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochemical and Biophysical Research Communications, 2005, 329, 1293-1299.	2.1	43
77	Nahua indian medicinal plants (Mexico): Inhibitory activity on NF-κB as an anti-inflammatory model and antibacterial effects. Phytomedicine, 1996, 3, 263-269.	5.3	42
78	Human homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of protein kinases and maps to chromosome 7q32-q34. Biochimie, 2000, 82, 1123-1127.	2.6	42
79	Integration of the Activation of the Human Hyaluronan Synthase 2 Gene Promoter by Common Cofactors of the Transcription Factors Retinoic Acid Receptor and Nuclear Factor ΰB. Journal of Biological Chemistry, 2007, 282, 11530-11539.	3.4	41
80	Control of nuclear HIPK2 localization and function by a SUMO interaction motif. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 283-297.	4.1	41
81	The Activation of IL-1-Induced Enhancers Depends on TAK1 Kinase Activity and NF-κB p65. Cell Reports, 2015, 10, 726-739.	6.4	41
82	The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene, 2009, 28, 2535-2544.	5.9	39
83	Basal Transcription Factors TBP and TFIIB and the Viral Coactivator E1A 13S Bind with Distinct Affinities and Kinetics to the Transactivation Domain of NF-ÂB p65. Nucleic Acids Research, 1997, 25, 1050-1055.	14.5	38
84	Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene, 2003, 22, 8731-8737.	5.9	38
85	Posttranslational modifications regulate HIPK2, a driver of proliferative diseases. Journal of Molecular Medicine, 2013, 91, 1051-1058.	3.9	38
86	IL-17 reduces TNF-induced Rantes and VCAM-1 expression. Cytokine, 2005, 31, 191-202.	3.2	37
87	PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene, 2009, 28, 698-708.	5.9	37
88	Src Homology 2 Domain-Containing Leukocyte Phosphoprotein of 76 kDa and Phospholipase Cl̂³1 Are Required for NF-l̂®B Activation and Lipid Raft Recruitment of Protein Kinase Cl̂, Induced by T Cell Costimulation. Journal of Immunology, 2003, 170, 365-372.	0.8	35
89	K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Molecular Cell, 2016, 62, 943-957.	9.7	35
90	Caspase-dependent cleavage and inactivation of the Vav1 proto-oncogene product during apoptosis prevents IL-2 transcription. Oncogene, 2000, 19, 1153-1163.	5.9	32

#	Article	IF	CITATIONS
91	Inhibitory effect of NF-κB on 1,25-dihydroxyvitamin D ₃ and retinoid X receptor function. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E213-E220.	3.5	32
92	Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood, 2004, 104, 3302-3304.	1.4	31
93	Interleukin-1 beta-induced expression of the prostaglandin E2-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB. Journal of Neurochemistry, 2006, 96, 680-693.	3.9	31
94	SIAH2 antagonizes TYK2-STAT3 signaling in lung carcinoma cells. Oncotarget, 2014, 5, 3184-3196.	1.8	31
95	Role of CREB1 and NFκB-p65 in the Down-regulation of Renin Gene Expression by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2005, 280, 24356-24362.	3.4	30
96	Integration of stress signals by homeodomain interacting protein kinases. Biological Chemistry, 2014, 395, 375-386.	2.5	30
97	NFâ€ÎºB p65 dimerization and DNAâ€binding is important for inflammatory gene expression. FASEB Journal, 2019, 33, 4188-4202.	0.5	30
98	Phenotype and Regulation of Persistent Intracerebral T Cells in Murine <i>Toxoplasma</i> Encephalitis. Journal of Immunology, 2002, 169, 315-322.	0.8	29
99	SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 136-143.	4.1	29
100	Protein Kinase C Î, Cooperates with Vav1 to Induce JNK Activity in T-cells. Journal of Biological Chemistry, 2001, 276, 20022-20028.	3.4	26
101	Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage. Nucleic Acids Research, 2013, 41, 5731-5745.	14.5	26
102	Thrombin selectively induces transcription of genes in human monocytes involved in inflammation and wound healing. Thrombosis and Haemostasis, 2014, 112, 992-1001.	3.4	26
103	Distinct ILâ€1αâ€responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO Journal, 2020, 39, e101533.	7.8	25
104	Mutations of c-Cbl in myeloid malignancies. Oncotarget, 2015, 6, 10689-10696.	1.8	25
105	The Promoter Context Determines Mutual Repression or Synergism between NF-ήB and the Glucocorticoid Receptor. Biological Chemistry, 2002, 383, 1947-1951.	2.5	24
106	CD95-induced JNK activation signals are transmitted by the death-inducing signaling complex (DISC), but not by Daxx. International Journal of Cancer, 2001, 93, 185-191.	5.1	23
107	SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2287-2296.	4.1	23
108	Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism. Infection and Immunity, 2020, 88, .	2.2	23

#	Article	IF	CITATIONS
109	From top to bottom: The two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle, 2009, 8, 1659-1664.	2.6	22
110	The CCR4-NOT complex contributes to repression of Major Histocompatibility Complex class II transcription. Scientific Reports, 2017, 7, 3547.	3.3	22
111	Regulation of the tumor suppressor PML by sequential post-translational modifications. Frontiers in Oncology, 2012, 2, 204.	2.8	21
112	Expression pattern of protease activated receptors in lymphoid cells. Cellular Immunology, 2014, 288, 47-52.	3.0	21
113	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	5.2	21
114	Pheophorbide A from Solanum diflorum Interferes with NF-κB Activation. Planta Medica, 2001, 67, 156-157.	1.3	20
115	T?cell receptor-induced lipid raft recruitment of the I?B kinase complex is necessary and sufficient for NF-?B activation occurring in the cytosol. European Journal of Immunology, 2005, 35, 318-325.	2.9	20
116	Improved Intraportal Islet Transplantation Outcome by Systemic IKK-beta Inhibition: NF-κB Activity in Pancreatic Islets Depends on Oxygen Availability. American Journal of Transplantation, 2011, 11, 215-224.	4.7	20
117	Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. Journal of Virology, 2019, 93, .	3.4	19
118	Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle, 2020, 19, 625-641.	2.6	19
119	Activation of T Cells: Releasing the Brakes by Proteolytic Elimination of Cbl-b. Science Signaling, 2009, 2, pe38.	3.6	18
120	Hsc70 Is a Novel Interactor of NF-kappaB p65 in Living Hippocampal Neurons. PLoS ONE, 2013, 8, e65280.	2.5	18
121	HIPK family kinases bind and regulate the function of the CCR4-NOT complex. Molecular Biology of the Cell, 2016, 27, 1969-1980.	2.1	17
122	Differential intracellular localization and dynamic nucleocytoplasmic shuttling of homeodomain-interacting protein kinase family members. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1676-1686.	4.1	17
123	SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Scientific Reports, 2020, 10, 2268.	3.3	17
124	Novel Molecular Targets in the Search for Anti-Inflammatory Agents. Phytochemistry Reviews, 2005, 4, 19-25.	6.5	16
125	Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules, 2020, 10, 1310.	4.0	16
126	A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death and Differentiation, 2022, 29, 105-117.	11.2	16

8

#	Article	IF	CITATIONS
127	Inhibition of tyrosine phosphatases induces apoptosis independent from the CD95 system. Cell Death and Differentiation, 1999, 6, 833-841.	11.2	15
128	Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling. EMBO Reports, 2011, 12, 129-135.	4.5	15
129	The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB. Journal of Virology, 2016, 90, 7980-7990.	3.4	15
130	Formaldehyde-assisted Isolation of Regulatory Elements to Measure Chromatin Accessibility in Mammalian Cells. Journal of Visualized Experiments, 2018, , .	0.3	15
131	The Direct and Indirect Roles of NF-κB in Cancer: Lessons from Oncogenic Fusion Proteins and Knock-in Mice. Biomedicines, 2018, 6, 36.	3.2	15
132	Monitoring the Levels of Cellular NF-κB Activation States. Cancers, 2021, 13, 5351.	3.7	15
133	NIK and Cot cooperate to trigger NF-κB p65 phosphorylation. Biochemical and Biophysical Research Communications, 2008, 371, 294-297.	2.1	14
134	New Insights into the Role of Histone Deacetylases as Coactivators of Inflammatory Gene Expression. Antioxidants and Redox Signaling, 2015, 23, 85-98.	5.4	14
135	Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells, 2021, 10, 753.	4.1	14
136	Lipoteichoic acid selectively induces the ERK signaling pathway in the cornea. Investigative Ophthalmology and Visual Science, 2002, 43, 2272-7.	3.3	14
137	Inhibition of NF-κB activation and expression of inflammatory mediators by polyacetylene spiroketals from Plagius flosculosus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1729, 88-93.	2.4	13
138	ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. IScience, 2019, 19, 527-544.	4.1	13
139	A Hydrophobic Region within the Adenovirus E1B 19 kDa Protein Is Necessary for the Transient Inhibition of NF-κB Activated by Different Stimuli. Journal of Biological Chemistry, 1996, 271, 20392-20398.	3.4	12
140	Viruses as hijackers of PML nuclear bodies. Archivum Immunologiae Et Therapiae Experimentalis, 2003, 51, 295-300.	2.3	12
141	Chemotherapeutic Drugs Inhibiting Topoisomerase 1 Activity Impede Cytokine-Induced and NF-ήB p65-Regulated Gene Expression. Cancers, 2019, 11, 883.	3.7	11
142	Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation. Biological Chemistry, 2009, 390, 1079-1083.	2.5	10
143	Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. Journal of Cystic Fibrosis, 2021, 20, 140-148.	0.7	10
144	[4] Molecular analysis of mitogen-activated protein kinase signaling pathways induced by reactive oxygen intermediates. Methods in Enzymology, 2002, 352, 53-61.	1.0	9

#	Article	IF	CITATIONS
145	Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways. Oncogenesis, 2013, 2, e79-e79.	4.9	9
146	NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1785-1798.	4.1	9
147	Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Frontiers in Cell and Developmental Biology, 2020, 8, 852.	3.7	9
148	Single-Cell Analysis of Multiple Steps of Dynamic NF-κB Regulation in Interleukin-1α-Triggered Tumor Cells Using Proximity Ligation Assays. Cancers, 2019, 11, 1199.	3.7	8
149	Thapsigargin: key to new host-directed coronavirus antivirals?. Trends in Pharmacological Sciences, 2022, 43, 557-568.	8.7	8
150	RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Frontiers in Immunology, 2018, 9, 775.	4.8	7
151	Inhibition of tyrosine phosphatases antagonizes CD95-mediated apoptosis. FEBS Journal, 1999, 264, 132-139.	0.2	6
152	The 73ÂkDa Subunit of the CPSF Complex Binds to the HIV-1 LTR Promoter and Functions as a Negative Regulatory Factor that Is Inhibited by the HIV-1 Tat Protein. Journal of Molecular Biology, 2007, 372, 317-330.	4.2	6
153	MEKK1-Dependent Activation of the CRL4 Complex Is Important for DNA Damage-Induced Degradation of p21 and DDB2 and Cell Survival. Molecular and Cellular Biology, 2021, 41, e0008121.	2.3	6
154	The Drosophila proteins Pelle and Tube induce JNK/AP-1 activity in mammalian cells. FEBS Letters, 2001, 497, 153-158.	2.8	5
155	TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks. Cancers, 2021, 13, 3618.	3.7	4
156	Comparative kinase activity profiling of pathogenic influenza A viruses reveals new anti- and pro-viral protein kinases. Journal of General Virology, 2022, 103, .	2.9	3
157	A Bacterial Small Molecule Undermining Immune Response Signaling. ChemBioChem, 2008, 9, 2575-2577.	2.6	2
158	SIAH ubiquitin E3 ligases as modulators of inflammatory gene expression. Heliyon, 2022, 8, e09029.	3.2	2
159	Bacterial Expression, Purification, and Potential Use of His-Tagged GAL4 Fusion Proteins. , 1997, 63, 129-138.		1
160	NF-ϰB: A Multifaceted Transcription Factor Regulated at Several Levels. ChemInform, 2004, 35, no.	0.0	0
161	Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases. Methods in Molecular Biology, 2017, 1510, 297-312.	0.9	0
162	Rapid characterization of lambda cDNA clones after amplification and radioactive labeling with the PCR technique. BioTechniques, 1993, 14, 906-8.	1.8	0