
Vivek Malhotra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573762/publications.pdf Version: 2024-02-01

VINER MALHOTRA

#	Article	IF	CITATIONS
1	Reversing chemorefraction in colorectal cancer cells by controlling mucin secretion. ELife, 2022, 11, .	2.8	6
2	TANGO1 marshals the early secretory pathway for cargo export. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183700.	1.4	19
3	Reactive oxygen species triggers unconventional secretion of antioxidants and Acb1. Journal of Cell Biology, 2020, 219, .	2.3	19
4	The function of GORASPs in Golgi apparatus organization in vivo. Journal of Cell Biology, 2020, 219, .	2.3	22
5	Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. ELife, 2020, 9, .	2.8	45
6	TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. ELife, 2020, 9, .	2.8	26
7	A physical mechanism of TANGO1-mediated bulky cargo export. ELife, 2020, 9, .	2.8	24
8	GRASP55 and UPR Control Interleukin-1β Aggregation and Secretion. Developmental Cell, 2019, 49, 145-155.e4.	3.1	39
9	Protein transport by vesicles and tunnels. Journal of Cell Biology, 2019, 218, 737-739.	2.3	55
10	New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. Journal of Cell Biology, 2019, 218, 3861-3879.	2.3	25
11	Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca2+-induced mucin secretion from goblet cells. Journal of Biological Chemistry, 2019, 294, 816-826.	1.6	33
12	Protein kinase D regulates metabolism and growth by controlling secretion of insulin like peptide. Developmental Biology, 2018, 434, 175-185.	0.9	6
13	Unconventional protein secretion triggered by nutrient starvation. Seminars in Cell and Developmental Biology, 2018, 83, 22-28.	2.3	37
14	TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. ELife, 2018, 7, .	2.8	106
15	Unconventional secretion of FABP4 by endosomes and secretory lysosomes. Journal of Cell Biology, 2018, 217, 649-665.	2.3	64
16	KChIP3 coupled to Ca2+ oscillations exerts a tonic brake on baseline mucin release in the colon. ELife, 2018, 7, .	2.8	18
17	TANGO1 assembles into rings around COPII coats at ER exit sites. Journal of Cell Biology, 2017, 216, 901-909.	2.3	76
18	Sphingolipid metabolic flow controls phosphoinositide turnover at the <i>trans</i> â€Golgi network. EMBO Journal, 2017, 36, 1736-1754.	3.5	79

#	Article	IF	CITATIONS
19	A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. Journal of Cell Biology, 2017, 216, 2691-2700.	2.3	42
20	Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis. Molecular Biology of the Cell, 2017, 28, 141-151.	0.9	16
21	Sphingomyelin metabolism controls the shape and function of the Golgi cisternae. ELife, 2017, 6, .	2.8	33
22	TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. Journal of Cell Biology, 2016, 213, 343-354.	2.3	99
23	ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. ELife, 2016, 5, .	2.8	54
24	Procollagen export from the endoplasmic reticulum. Biochemical Society Transactions, 2015, 43, 104-107.	1.6	39
25	The Pathway of Collagen Secretion. Annual Review of Cell and Developmental Biology, 2015, 31, 109-124.	4.0	137
26	A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction. PLoS ONE, 2015, 10, e0140976.	1.1	23
27	The pleasure of publishing. ELife, 2015, 4, .	2.8	8
28	TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export. ELife, 2015, 4, .	2.8	86
29	Remodeling of secretory compartments creates CUPS during nutrient starvation. Journal of Cell Biology, 2014, 207, 695-703.	2.3	52
30	Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network. Journal of Cell Biology, 2014, 206, 609-618.	2.3	45
31	SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. ELife, 2014, 3, e02784.	2.8	75
32	Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface. Journal of Cell Biology, 2013, 202, 241-250.	2.3	49
33	Nonâ€autophagic roles of autophagyâ€related proteins. EMBO Reports, 2013, 14, 143-151.	2.0	243
34	Unconventional protein secretion: an evolving mechanism. EMBO Journal, 2013, 32, 1660-1664.	3.5	143
35	Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO Journal, 2013, 32, 1717-1729.	3.5	61
36	TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. ELife, 2013, 2, e00658.	2.8	49

#	Article	IF	CITATIONS
37	MEK1 inactivates Myt1 to regulate Golgi membrane fragmentation and mitotic entry in mammalian cells. EMBO Journal, 2012, 32, 72-85.	3.5	28
38	Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO Journal, 2012, 31, 4535-4546.	3.5	74
39	Cab45 is required for Ca2+-dependent secretory cargo sorting at the trans-Golgi network. Journal of Cell Biology, 2012, 199, 1057-1066.	2.3	80
40	A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. EMBO Journal, 2012, 31, 3976-3990.	3.5	88
41	COPII Vesicles Get Supersized by Ubiquitin. Cell, 2012, 149, 20-21.	13.5	5
42	Sedlin Controls the ER Export of Procollagen by Regulating the Sar1 Cycle. Science, 2012, 337, 1668-1672.	6.0	157
43	Diversity in unconventional protein secretion. Journal of Cell Science, 2012, 125, 5251-5255.	1.2	229
44	Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Molecular Biology of the Cell, 2012, 23, 2327-2338.	0.9	40
45	Membrane Fission: The Biogenesis of Transport Carriers. Annual Review of Biochemistry, 2012, 81, 407-427.	5.0	96
46	ADF/Cofilin Regulates Secretory Cargo Sorting at the TGN via the Ca2+ ATPase SPCA1. Developmental Cell, 2011, 20, 652-662.	3.1	88
47	Protein export at the ER: loading big collagens into COPII carriers. EMBO Journal, 2011, 30, 3475-3480.	3.5	75
48	Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. Journal of Cell Biology, 2011, 195, 979-992.	2.3	165
49	PKD Regulates Membrane Fission to Generate TGN to Cell Surface Transport Carriers. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005280-a005280.	2.3	87
50	cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Molecular Biology of the Cell, 2011, 22, 2301-2308.	0.9	141
51	Chemical biology studies on norrisolide. Bioorganic and Medicinal Chemistry, 2010, 18, 2115-2122.	1.4	17
52	Unconventional Secretion of AcbA in Dictyostelium discoideum through a Vesicular Intermediate. Eukaryotic Cell, 2010, 9, 1009-1017.	3.4	50
53	Role of the Second Cysteine-rich Domain and Pro275 in Protein Kinase D2 Interaction with ADP-Ribosylation Factor 1, <i>Trans</i> -Golgi Network Recruitment, and Protein Transport. Molecular Biology of the Cell, 2010, 21, 1011-1022.	0.9	57
54	Unconventional secretion of Acb1 is mediated by autophagosomes. Journal of Cell Biology, 2010, 188, 527-536.	2.3	360

#	Article	IF	CITATIONS
55	Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. Journal of Cell Biology, 2009, 187, 1055-1069.	2.3	98
56	Journeys through the Golgi—taking stock in a new era. Journal of Cell Biology, 2009, 187, 449-453.	2.3	156
57	TANGO1 Facilitates Cargo Loading at Endoplasmic Reticulum Exit Sites. Cell, 2009, 136, 891-902.	13.5	320
58	Regulated assembly of proteins and lipids at the Golgi to generate membrane fission activity. Chemistry and Physics of Lipids, 2008, 154, S3.	1.5	1
59	A Golgi fragmentation pathway in neurodegeneration. Neurobiology of Disease, 2008, 29, 221-231.	2.1	115
60	CP110 Suppresses Primary Cilia Formation through Its Interaction with CEP290, a Protein Deficient in Human Ciliary Disease. Developmental Cell, 2008, 15, 187-197.	3.1	228
61	The Role of GRASP55 in Golgi Fragmentation and Entry of Cells into Mitosis. Molecular Biology of the Cell, 2008, 19, 2579-2587.	0.9	78
62	Protein Kinase D Regulates Trafficking of Dendritic Membrane Proteins in Developing Neurons. Journal of Neuroscience, 2008, 28, 9297-9308.	1.7	68
63	Dimeric PKD regulates membrane fission to form transport carriers at the TGN. Journal of Cell Biology, 2007, 179, 1123-1131.	2.3	121
64	The Golgi-Associated Protein GRASP Is Required for Unconventional Protein Secretion during Development. Cell, 2007, 130, 524-534.	13.5	211
65	Trifunctional norrisolide probes for the study of Golgi vesiculation. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 320-325.	1.0	13
66	The Formation of TGN-to-Plasma-Membrane Transport Carriers. Annual Review of Cell and Developmental Biology, 2006, 22, 439-455.	4.0	183
67	Chemical Analysis of Norrisolide-Induced Golgi Vesiculation. Journal of the American Chemical Society, 2006, 128, 4190-4191.	6.6	34
68	The Golgi grows up. Nature, 2006, 441, 939-940.	13.7	34
69	Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature, 2006, 439, 604-607.	13.7	337
70	The Golgi Apparatus Maintains Its Organization Independent of the Endoplasmic Reticulum. Molecular Biology of the Cell, 2006, 17, 5372-5380.	0.9	27
71	Membranes and organelles. Current Opinion in Cell Biology, 2005, 17, 343-344.	2.6	2
72	The Golgi-associated Protein GRASP65 Regulates Spindle Dynamics and Is Essential for Cell Division. Molecular Biology of the Cell, 2005, 16, 3211-3222.	0.9	126

#	Article	IF	CITATIONS
73	PKCη is required for β1γ2/β3γ2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. Journal of Cell Biology, 2005, 169, 83-91.	2.3	128
74	Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nature Cell Biology, 2004, 6, 106-112.	4.6	225
75	Fragmentation of Golgi membranes by norrisolide and designed analogues. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5035-5039.	1.0	28
76	Golgi Membranes Remain Segregated from the Endoplasmic Reticulum during Mitosis in Mammalian Cells. Cell, 2004, 116, 99-107.	13.5	79
77	Cell-cycle-specific Golgi fragmentation: how and why?. Current Opinion in Cell Biology, 2003, 15, 462-467.	2.6	106
78	Prefission Constriction of Golgi Tubular Carriers Driven by Local Lipid Metabolism: A Theoretical Model. Biophysical Journal, 2003, 85, 3813-3827.	0.2	88
79	Myosin Motors and Not Actin Comets Are Mediators of the Actin-based Golgi-to-Endoplasmic Reticulum Protein Transport. Molecular Biology of the Cell, 2003, 14, 445-459.	0.9	84
80	Src Regulates Golgi Structure and KDEL Receptor-dependent Retrograde Transport to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2003, 278, 46601-46606.	1.6	97
81	RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. Journal of Cell Biology, 2003, 161, 27-32.	2.3	61
82	Role of Diacylglycerol in PKD Recruitment to the TGN and Protein Transport to the Plasma Membrane. Science, 2002, 295, 325-328.	6.0	397
83	Fragmentation and Dispersal of the Pericentriolar Golgi Complex Is Required for Entry into Mitosis in Mammalian Cells. Cell, 2002, 109, 359-369.	13.5	234
84	Rothman and Schekman SNAREd by Lasker for Trafficking. Cell, 2002, 111, 1-3.	13.5	41
85	Protein kinase D: an intracellular traffic regulator on the move. Trends in Cell Biology, 2002, 12, 193-200.	3.6	220
86	Protein Kinase D Regulates the Fission of Cell Surface Destined Transport Carriers from the Trans-Golgi Network. Cell, 2001, 104, 409-420.	13.5	343
87	Investigation of the biological mode of action of clerocidin using whole cell assays. Bioorganic and Medicinal Chemistry, 2001, 9, 1365-1370.	1.4	22
88	Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. EMBO Journal, 2001, 20, 5982-5990.	3.5	150
89	Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9128-9132.	3.3	107
90	A Specific Activation of the Mitogen-Activated Protein Kinase Kinase 1 (Mek1) Is Required for Golgi Fragmentation during Mitosis. Journal of Cell Biology, 2000, 149, 331-340.	2.3	98

#	Article	IF	CITATIONS
91	Gβγ-Mediated Regulation of Golgi Organization Is through the Direct Activation of Protein Kinase D. Cell, 1999, 98, 59-68.	13.5	265
92	The organisation of the Golgi apparatus. Current Opinion in Cell Biology, 1998, 10, 493-498.	2.6	98
93	Signaling via Mitogen-Activated Protein Kinase Kinase (MEK1) Is Required for Golgi Fragmentation during Mitosis. Cell, 1998, 92, 183-192.	13.5	180
94	The Curious Status of the Golgi Apparatus. Cell, 1998, 95, 883-889.	13.5	212
95	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	2.3	50
96	Membranes and sorting. Current Opinion in Cell Biology, 1997, 9, 475-476.	2.6	10
97	Regulation of Golgi Structure through Heterotrimeric G Proteins. Cell, 1997, 91, 617-626.	13.5	115
98	The mechanism of Golgi segregation during mitosis is cell type-specific. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14467-14470.	3.3	104
99	Reconstitution of Golgi stacks from vesiculated Golgi membranes in permeabilized cells. Seminars in Cell and Developmental Biology, 1996, 7, 511-516.	2.3	1
100	Membrane fusion in organelle biogenesis. Current Opinion in Cell Biology, 1996, 8, 519-523.	2.6	26
101	Reconstitution of vesiculated Golgi membranes into stacks of cisternae: requirement of NSF in stack formation Journal of Cell Biology, 1995, 129, 577-589.	2.3	43
102	Vesicle biogenesis: The coat connection. Cell, 1995, 83, 667-669.	13.5	22
103	The formation of golgi stacks from vesiculated golgi membranes requires two distinct fusion events. Cell, 1995, 82, 895-904.	13.5	209
104	Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex Journal of Cell Biology, 1994, 127, 707-723.	2.3	178
105	Location of Golgi membranes with reference to dividing nuclei in syncytial Drosophila embryos Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1878-1882.	3.3	56
106	ARF signaling: A potential role for phospholipase D in membrane traffic. Cell, 1993, 75, 1045-1048.	13.5	172
107	Coatomers and SNAREs in promoting membrane traffic. Cell, 1993, 75, 593-596.	13.5	41
108	Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell, 1993, 73, 1079-1090.	13.5	208

#	Article	IF	CITATIONS
109	Microtubule independent vesiculation of Golgi membranes and the reassembly of vesicles into Golgi stacks. Journal of Cell Biology, 1993, 122, 1197-1206.	2.3	50
110	Fatty acyl-coenzyme a is required for budding of transport vesicles from Golgi cisternae. Cell, 1989, 59, 95-102.	13.5	221
111	Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell, 1989, 58, 329-336.	13.5	410
112	Dissection of a single round of vesicular transport: Sequential intermediates for intercisternal movement in the Golgi stack. Cell, 1989, 56, 357-368.	13.5	274
113	Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell, 1988, 54, 221-227.	13.5	377
114	Involvement of GTP-binding "G―proteins in transport through the Golgi stack. Cell, 1987, 51, 1053-1062.	13.5	503
115	Structure and specificity of complement receptors. Immunology Letters, 1987, 14, 183-190.	1.1	25
116	Ligand binding by the pl50,95 antigen of U937 monocytic cells: properties in common with complement receptor type 3 (CR3). European Journal of Immunology, 1986, 16, 1117-1123.	1.6	98
117	Expression of complement factor H on the cell surface of the human monocytic cell line U937. European Journal of Immunology, 1985, 15, 935-941.	1.6	51
118	Role of complement receptor CR1 in the breakdown of soluble and zymosan-bound C3b. Biochemical Society Transactions, 1984, 12, 781-782.	1.6	17