
## J H Crawford

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5737217/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An overview of snow photochemistry: evidence, mechanisms and impacts. Atmospheric Chemistry and Physics, 2007, 7, 4329-4373.                                                                                  | 4.9 | 554       |
| 2  | Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. Journal of Geophysical Research, 2003, 108, .                                             | 3.3 | 510       |
| 3  | The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS)<br>mission: design, execution, and first results. Atmospheric Chemistry and Physics, 2010, 10, 5191-5212.     | 4.9 | 419       |
| 4  | Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 163-173.                                                                                                    | 4.9 | 293       |
| 5  | Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmospheric Environment, 2010, 44, 2213-2223.                                                  | 4.1 | 292       |
| 6  | Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. Journal of<br>Geophysical Research, 1996, 101, 2135-2147.                                                             | 3.3 | 256       |
| 7  | Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results. Atmospheric Chemistry and Physics, 2009, 9, 2301-2318.                 | 4.9 | 237       |
| 8  | Overview of the summer 2004 Intercontinental Chemical Transport Experiment–North America<br>(INTEX-A). Journal of Geophysical Research, 2006, 111, .                                                          | 3.3 | 233       |
| 9  | Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals<br>based on measurements over the Pacific during TRACE-P. Journal of Geophysical Research, 2004, 109, . | 3.3 | 228       |
| 10 | Chemistry of hydrogen oxide radicals (HO <sub>x</sub> ) in the Arctic<br>troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.                                                       | 4.9 | 220       |
| 11 | Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective. Journal of Geophysical Research, 2003, 108, n/a-n/a.              | 3.3 | 196       |
| 12 | Reactive nitrogen and ozone over the western Pacific: Distribution, partitioning, and sources. Journal of Geophysical Research, 1996, 101, 1793-1808.                                                         | 3.3 | 171       |
| 13 | The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American<br>Meteorological Society, 2015, 96, 1281-1309.                                                                       | 3.3 | 165       |
| 14 | New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer<br>(GEMS). Bulletin of the American Meteorological Society, 2020, 101, E1-E22.                                | 3.3 | 165       |
| 15 | HO <sub><i>x</i></sub> chemistry during INTEXâ€A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research, 2008, 113, .                                    | 3.3 | 163       |
| 16 | Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment. Journal of Geophysical Research, 1996, 101, 1907-1917.                             | 3.3 | 156       |
| 17 | Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991. Journal of Geophysical Research, 1996, 101, 2111-2134.                         | 3.3 | 147       |
| 18 | OH photochemistry and methane sulfonic acid formation in the coastal Antarctic boundary layer.<br>Journal of Geophysical Research, 1998, 103, 1647-1656.                                                      | 3.3 | 131       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal<br>and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.<br>South Pole < min. Math alting = si26.gif overflow = scroll                                                                                                                                                                        | 4.1  | 131       |
| 20 | xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"<br>xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"<br>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"<br>xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"<br>xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" | 4.1  | 128       |
| 21 | Assessmentropulprevered on the photochemical parameters. Journal of Geophysical Research, 1999, 104, 16255-16273.                                                                                                                                                                                                                                                                                                            | 3.3  | 123       |
| 22 | A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,                                                                                                                                                                                                                                                                                                                       | 4.0  | 116       |
| 23 | Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.                                                                                                                                                                                                                                                                                                                       | 12.6 | 114       |
| 24 | Large upper tropospheric ozone enhancements above midlatitude North America during summer: In<br>situ evidence from the IONS and MOZAIC ozone measurement network. Journal of Geophysical<br>Research, 2006, 111, .                                                                                                                                                                                                          | 3.3  | 113       |
| 25 | Evidence for photochemical production of ozone at the South Pole surface. Geophysical Research<br>Letters, 2001, 28, 3641-3644.                                                                                                                                                                                                                                                                                              | 4.0  | 103       |
| 26 | An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research, 2005, 110, .                                                                                                                                                                                                                                                                                                    | 3.3  | 103       |
| 27 | Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research, 2007, 112, .                                                                                                                                                                                                                                                                  | 3.3  | 102       |
| 28 | Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the<br>Intercontinental Chemical Transport Experiment–North America. Journal of Geophysical Research,<br>2007, 112, .                                                                                                                                                                                                             | 3.3  | 102       |
| 29 | A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution. Atmospheric Measurement Techniques, 2014, 7, 3763-3772.                                                                                                                                                                                                                                           | 3.1  | 95        |
| 30 | Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific. Journal of Geophysical Research, 1996, 101, 2053-2072.                                                                                                                                                                                                                                        | 3.3  | 91        |
| 31 | A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000.<br>Atmospheric Environment, 2004, 38, 5451-5461.                                                                                                                                                                                                                                                                                | 4.1  | 91        |
| 32 | Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models. Geophysical Research Letters, 2003, 30, .                                                                                                                                                                                                                                    | 4.0  | 89        |
| 33 | Upper tropospheric ozone production from lightning NO <i><sub>x</sub></i> â€impacted convection:<br>Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres,<br>2015, 120, 2505-2523.                                                                                                                                                                                               | 3.3  | 88        |
| 34 | A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements. Atmospheric Environment, 2008, 42, 2831-2848.                                                                                                                                                                                                                                                              | 4.1  | 87        |
| 35 | New insights into the column CH <sub>2</sub> O/NO <sub>2</sub> ratio as an indicator of nearâ€surface ozone sensitivity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8885-8907.                                                                                                                                                                                                                               | 3.3  | 87        |
| 36 | Ozone production and its sensitivity to<br>NO <sub><i>x</i></sub> and VOCs: results from<br>the DISCOVER-AQ field experiment, Houston 2013. Atmospheric Chemistry and Physics, 2016, 16,<br>14463-14474.                                                                                                                                                                                                                     | 4.9  | 85        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An assessment of ozone photochemistry in the extratropical western North Pacific: Impact of<br>continental outflow during the late winter/early spring. Journal of Geophysical Research, 1997, 102,<br>28469-28487. | 3.3 | 83        |
| 38 | Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.                                                                          | 4.9 | 82        |
| 39 | The Korea–United States Air Quality (KORUS-AQ) field study. Elementa, 2021, 9, 1-27.                                                                                                                                | 3.2 | 82        |
| 40 | In situ measurements and modeling of reactive trace gases in a small biomass burning plume.<br>Atmospheric Chemistry and Physics, 2016, 16, 3813-3824.                                                              | 4.9 | 81        |
| 41 | Impacts of biomass burning in Southeast Asia on ozone and reactive nitrogen over the western Pacific in spring. Journal of Geophysical Research, 2004, 109, .                                                       | 3.3 | 80        |
| 42 | OH and HO2in the tropical Pacific: Results from PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32667-32681.                                                                                             | 3.3 | 75        |
| 43 | Hydrogen peroxide and methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall of 1991. Journal of Geophysical Research, 1996, 101, 1891-1905.                        | 3.3 | 74        |
| 44 | BATAL: The Balloon Measurement Campaigns of the Asian Tropopause Aerosol Layer. Bulletin of the<br>American Meteorological Society, 2018, 99, 955-973.                                                              | 3.3 | 74        |
| 45 | A reevaluation of airborne HOxobservations from NASA field campaigns. Journal of Geophysical<br>Research, 2006, 111, n/a-n/a.                                                                                       | 3.3 | 72        |
| 46 | Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology. Atmospheric Chemistry and Physics, 2012, 12, 189-206.                                 | 4.9 | 72        |
| 47 | An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks. Atmospheric Chemistry and Physics, 2018, 18, 655-671.                                                         | 4.9 | 72        |
| 48 | Impact of ship emissions on marine boundary layer NOxand SO2Distributions over the Pacific Basin.<br>Geophysical Research Letters, 2001, 28, 235-238.                                                               | 4.0 | 71        |
| 49 | Dispersion and chemical evolution of ship plumes in the marine boundary layer: Investigation of O3/NOy/HOxchemistry. Journal of Geophysical Research, 2003, 108, .                                                  | 3.3 | 71        |
| 50 | Testing fast photochemical theory during TRACE-P based on measurements of OH, HO2, and CH2O.<br>Journal of Geophysical Research, 2004, 109, .                                                                       | 3.3 | 71        |
| 51 | Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export. Journal of<br>Applied Meteorology and Climatology, 2014, 53, 1697-1713.                                                         | 1.5 | 70        |
| 52 | Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box<br>model comparisons. Journal of Geophysical Research, 2003, 108, .                                                 | 3.3 | 68        |
| 53 | Measurement of HO2NO2in the free troposphere during the Intercontinental Chemical Transport<br>Experiment–North America 2004. Journal of Geophysical Research, 2007, 112, .                                         | 3.3 | 68        |
| 54 | OH and HO2chemistry in the North Atlantic free troposphere. Geophysical Research Letters, 1999, 26,<br>3077-3080.                                                                                                   | 4.0 | 67        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over<br>east Asia. Journal of Geophysical Research, 2003, 108, .                                                                           | 3.3 | 67        |
| 56 | A comparison of chemical mechanisms based on TRAMP-2006 field data. Atmospheric Environment, 2010, 44, 4116-4125.                                                                                                                    | 4.1 | 67        |
| 57 | Antarctic Tropospheric Chemistry Investigation (ANTCI) 2003 overview. Atmospheric Environment, 2008, 42, 2749-2761.                                                                                                                  | 4.1 | 65        |
| 58 | Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B. Journal of Geophysical Research, 2001, 106, 32749-32766.                                   | 3.3 | 64        |
| 59 | Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophysical<br>Research Letters, 2014, 41, 7785-7790.                                                                                           | 4.0 | 62        |
| 60 | Meteorology influencing springtime air quality, pollution transport, and visibility in Korea. Elementa, 2019, 7, .                                                                                                                   | 3.2 | 62        |
| 61 | Photofragmentation two-photon laser-induced fluorescence detection of NO2and NO: Comparison of measurements with model results based on airborne observations during PEM-Tropics A. Geophysical Research Letters, 1999, 26, 471-474. | 4.0 | 61        |
| 62 | An investigation of South Pole HOxchemistry: Comparison of model results with ISCAT observations.<br>Geophysical Research Letters, 2001, 28, 3633-3636.                                                                              | 4.0 | 61        |
| 63 | Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King<br>George Island. Atmospheric Chemistry and Physics, 2014, 14, 9903-9916.                                                         | 4.9 | 59        |
| 64 | Implications of large scale shifts in tropospheric NOxlevels in the remote tropical Pacific. Journal of<br>Geophysical Research, 1997, 102, 28447-28468.                                                                             | 3.3 | 58        |
| 65 | Impact of clouds and aerosols on photolysis frequencies and photochemistry during TRACE-P: 1.<br>Analysis using radiative transfer and photochemical box models. Journal of Geophysical Research,<br>2003, 108, .                    | 3.3 | 58        |
| 66 | An overview of ISCAT 2000. Atmospheric Environment, 2004, 38, 5363-5373.                                                                                                                                                             | 4.1 | 54        |
| 67 | Measurements of tropospheric HO <sub>2</sub> and<br>RO <sub>2</sub> by oxygen dilution modulation and chemical ionization<br>mass spectrometry. Atmospheric Measurement Techniques, 2011, 4, 735-756.                                | 3.1 | 54        |
| 68 | Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during<br>PEM-West A. Journal of Geophysical Research, 1996, 101, 1853-1871.                                                             | 3.3 | 53        |
| 69 | Cloud impacts on UV spectral actinic flux observed during the International Photolysis Frequency<br>Measurement and Model Intercomparison (IPMMI). Journal of Geophysical Research, 2003, 108, .                                     | 3.3 | 53        |
| 70 | Photochemical production and evolution of selected C2–C5alkyl nitrates in tropospheric air<br>influenced by Asian outflow. Journal of Geophysical Research, 2003, 108, .                                                             | 3.3 | 53        |
| 71 | On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol.<br>Atmospheric Chemistry and Physics, 2016, 16, 2575-2596.                                                                             | 4.9 | 53        |
| 72 | Photolysis frequency of NO2: Measurement and modeling during the International Photolysis<br>Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research,<br>2003, 108, .                            | 3.3 | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Atmospheric chemistry of an Antarctic volcanic plume. Journal of Geophysical Research, 2010, 115, .                                                                                                                                                                                                           | 3.3  | 51        |
| 74 | On the flux of oxygenated volatile organic compounds from organic aerosol oxidation. Geophysical<br>Research Letters, 2006, 33, .                                                                                                                                                                             | 4.0  | 50        |
| 75 | Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model. Journal of Geophysical Research, 2006, 111, .                                                                                                                                                    | 3.3  | 49        |
| 76 | Observations of the Interaction and Transport of Fine Mode Aerosols With Cloud and/or Fog in<br>Northeast Asia From Aerosol Robotic Network and Satellite Remote Sensing. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 5560-5587.                                                            | 3.3  | 49        |
| 77 | International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling. Journal of Geophysical Research, 2003, 108, .                                                                                                                        | 3.3  | 47        |
| 78 | Detailed comparisons of airborne formaldehyde measurements with box models during the 2006<br>INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and<br>multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 2011, 11,<br>11867-11894. | 4.9  | 46        |
| 79 | Relationship between column-density and surface mixing ratio: Statistical analysis of O3 and NO2 data from the July 2011 Maryland DISCOVER-AQ mission. Atmospheric Environment, 2014, 92, 429-441.                                                                                                            | 4.1  | 46        |
| 80 | Impact of clouds and aerosols on ozone production in Southeast Texas. Atmospheric Environment, 2010, 44, 4126-4133.                                                                                                                                                                                           | 4.1  | 45        |
| 81 | Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.                                                                                                                                                                                                                         | 10.3 | 45        |
| 82 | Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P)<br>campaign as measured aboard the NASA P-3B aircraft. Journal of Geophysical Research, 2003, 108, .                                                                                                           | 3.3  | 44        |
| 83 | Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .                                                                                                                                                                                | 3.2  | 44        |
| 84 | Trace gas transport and scavenging in PEM-Tropics B South Pacific Convergence Zone convection.<br>Journal of Geophysical Research, 2001, 106, 32591-32607.                                                                                                                                                    | 3.3  | 41        |
| 85 | Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign:<br>Methods, observed distributions, and measurementâ€model comparisons. Journal of Geophysical<br>Research, 2008, 113, .                                                                                        | 3.3  | 41        |
| 86 | Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign. Elementa, 2021, 9, .                                                                                                                                                                                                       | 3.2  | 41        |
| 87 | Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions. Journal of Atmospheric Chemistry, 2015, 72, 261-286.                                                                                                           | 3.2  | 39        |
| 88 | The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the<br>Baltimore–Washington, D.C. region. Atmospheric Chemistry and Physics, 2016, 16, 1003-1015.                                                                                                          | 4.9  | 39        |
| 89 | An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.                                                                                                            | 4.9  | 38        |
| 90 | Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of<br>DISCOVERâ€AQ 2011 observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1922-1934.                                                                                                      | 3.3  | 38        |

| #   | Article                                                                                                                                                                                                          | lF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Highâ€resolution NO <sub>2</sub> observations from the Airborne Compact Atmospheric Mapper:<br>Retrieval and validation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1953-1970.                   | 3.3 | 38        |
| 92  | Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa, 2019, 7, .                                                       | 3.2 | 38        |
| 93  | Role of wave cyclones in transporting boundary layer air to the free troposphere during the spring 2001 NASA/TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .                                   | 3.3 | 37        |
| 94  | Photochemistry of ozone over the western Pacific from winter to spring. Journal of Geophysical Research, 2004, 109, .                                                                                            | 3.3 | 37        |
| 95  | An assessment of the polar HOx photochemical budget based on 2003 Summit Greenland field observations. Atmospheric Environment, 2007, 41, 7806-7820.                                                             | 4.1 | 37        |
| 96  | An assessment of cloud effects on photolysis rate coefficients: Comparison of experimental and theoretical values. Journal of Geophysical Research, 1999, 104, 5725-5734.                                        | 3.3 | 36        |
| 97  | Highlights of OH, H2SO4, and methane sulfonic acid measurements made aboard the NASA P-3B during<br>Transport and Chemical Evolution over the Pacific. Journal of Geophysical Research, 2003, 108, .             | 3.3 | 36        |
| 98  | An assessment of western North Pacific ozone photochemistry based on springtime observations<br>from NASA's PEM-West B (1994) and TRACE-P (2001) field studies. Journal of Geophysical Research, 2003,<br>108, . | 3.3 | 35        |
| 99  | Heterogeneous chemistry involving methanol in tropospheric clouds. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                              | 4.0 | 35        |
| 100 | Role of convection in redistributing formaldehyde to the upper troposphere over North America and<br>the North Atlantic during the summer 2004 INTEX campaign. Journal of Geophysical Research, 2008, 113,       | 3.3 | 35        |
| 101 | Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study. Journal of Geophysical Research, 2010, 115, .                                                                                | 3.3 | 35        |
| 102 | Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange. Atmospheric Chemistry and Physics, 2011, 11, 13181-13199.                           | 4.9 | 35        |
| 103 | Long-range transport of Asian outflow to the equatorial Pacific. Journal of Geophysical Research, 2003, 108, PEM 5-1.                                                                                            | 3.3 | 34        |
| 104 | Summertime buildup and decay of lightning NO <sub>x</sub> and aged thunderstorm outflow above<br>North America. Journal of Geophysical Research, 2009, 114, .                                                    | 3.3 | 34        |
| 105 | Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane<br>sources: A case study from the Colorado Front Range. Geophysical Research Letters, 2016, 43, 11,462.               | 4.0 | 34        |
| 106 | The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmospheric Measurement Techniques, 2018, 11, 4943-4961.                             | 3.1 | 34        |
| 107 | Formaldehyde over the central Pacific during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32717-32731.                                                                                             | 3.3 | 33        |
| 108 | South Pole Antarctica observations and modeling results: New insights on HOx radical and sulfur chemistry. Atmospheric Environment, 2010, 44, 572-581.                                                           | 4.1 | 33        |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.                                                                              | 4.9 | 33        |
| 110 | Performance evaluation of a 16-µm methane DIAL system from ground, aircraft and UAV platforms.<br>Optics Express, 2013, 21, 30415.                                                                                                                              | 3.4 | 33        |
| 111 | An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations. Atmospheric Environment, 2014, 85, 18-30.                                                           | 4.1 | 33        |
| 112 | Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A. Journal of Geophysical Research, 1999, 104, 5865-5876.                                                                                                | 3.3 | 32        |
| 113 | Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the<br>Korea-United States Air Quality Study (KORUS-AQ). Elementa, 2020, 8, .                                                                                               | 3.2 | 32        |
| 114 | Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models.<br>Journal of Geophysical Research, 2001, 106, 32691-32707.                                                                                                    | 3.3 | 30        |
| 115 | Chemical transport model ozone simulations for spring 2001 over the western Pacific: Regional ozone production and its global impacts. Journal of Geophysical Research, 2004, 109, .                                                                            | 3.3 | 29        |
| 116 | Airborne intercomparison of HO <sub>x</sub> measurements using<br>laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS. Atmospheric<br>Measurement Techniques, 2012, 5, 2025-2037.                                                | 3.1 | 28        |
| 117 | Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7430-7460. | 3.3 | 28        |
| 118 | Air Quality in the Northern Colorado Front Range Metro Area: The Front Range Air Pollution and<br>Photochemistry Éxperiment (FRAPPÉ). Journal of Geophysical Research D: Atmospheres, 2020, 125,<br>e2019JD031197.                                              | 3.3 | 28        |
| 119 | Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles.<br>Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033475.                                                                              | 3.3 | 28        |
| 120 | Evolution and chemical consequences of lightning-produced NOxobserved in the North Atlantic upper troposphere. Journal of Geophysical Research, 2000, 105, 19795-19809.                                                                                         | 3.3 | 27        |
| 121 | Clouds and trace gas distributions during TRACE-P. Journal of Geophysical Research, 2003, 108, .                                                                                                                                                                | 3.3 | 27        |
| 122 | Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 1327-1338.                                                                                                    | 4.9 | 27        |
| 123 | An assessment of aircraft as a source of particles to the upper troposphere. Geophysical Research<br>Letters, 1999, 26, 3069-3072.                                                                                                                              | 4.0 | 26        |
| 124 | Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis. Atmospheric Chemistry and Physics, 2015, 15, 5161-5179.                                                                                 | 4.9 | 25        |
| 125 | Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 317-344.                                                                                                                                                                                         | 3.2 | 24        |
| 126 | Distribution, variability and sources of tropospheric ozone over south China in spring: Intensive ozonesonde measurements at five locations and modeling analysis. Journal of Geophysical Research, 2012, 117, .                                                | 3.3 | 21        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical<br>complex on Korea's northwest coast during the Korea-United States Air Quality study. Elementa, 2020,<br>8, .                                 | 3.2 | 21        |
| 128 | Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B). Journal of Geophysical Research, 2001, 106, 32609-32625.                                           | 3.3 | 20        |
| 129 | Formaldehyde column density measurements as a suitable pathway to estimate nearâ€surface ozone<br>tendencies from space. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13088-13112.                                               | 3.3 | 19        |
| 130 | Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid.<br>Atmospheric Chemistry and Physics, 2009, 9, 3697-3707.                                                                                           | 4.9 | 18        |
| 131 | Modeling NH 4 NO 3 Over the San Joaquin Valley During the 2013 DISCOVERâ€AQ Campaign. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 4727-4745.                                                                                 | 3.3 | 18        |
| 132 | Relationship between Measurements of Pollution in the Troposphere (MOPITT) and in situ<br>observations of CO based on a large-scale feature sampled during TRACE-P. Journal of Geophysical<br>Research, 2004, 109, .                           | 3.3 | 17        |
| 133 | Limitations in representation of physical processes prevent successful simulation of<br>PM <sub>2.5</sub> during KORUS-AQ. Atmospheric Chemistry and Physics,<br>2022, 22, 7933-7958.                                                          | 4.9 | 17        |
| 134 | Comparison of airborne NO2photolysis frequency measurements during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32645-32656.                                                                                                     | 3.3 | 14        |
| 135 | An overview of measurement comparisons from the INTEX-B/MILAGRO airborne field campaign.<br>Atmospheric Measurement Techniques, 2011, 4, 9-27.                                                                                                 | 3.1 | 14        |
| 136 | Large biogenic contribution to boundary layer O <sub>3</sub> O regression slope in summer.<br>Geophysical Research Letters, 2017, 44, 7061-7068.                                                                                               | 4.0 | 14        |
| 137 | Characterizing CO and NO <sub><i>y</i></sub> Sources and Relative Ambient Ratios in the Baltimore<br>Area Using Ambient Measurements and Source Attribution Modeling. Journal of Geophysical Research<br>D: Atmospheres, 2018, 123, 3304-3320. | 3.3 | 14        |
| 138 | Measurement of NO2by the photolysis conversion technique during the Transport and Chemical<br>Evolution Over the Pacific (TRACE-P) campaign. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                              | 3.3 | 13        |
| 139 | Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of<br>Geophysical Research D: Atmospheres, 2022, 127, .                                                                                             | 3.3 | 13        |
| 140 | Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output:<br>Planning for geostationary observations of atmospheric composition. Atmospheric Environment,<br>2015, 118, 28-44.                        | 4.1 | 11        |
| 141 | Estimator of Surface Ozone Using Formaldehyde and Carbon Monoxide Concentrations Over the<br>Eastern United States in Summer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7642-7655.                                            | 3.3 | 11        |
| 142 | Modeling Regional Pollution Transport Events During KORUSâ€AQ: Progress and Challenges in<br>Improving Representation of Landâ€Atmosphere Feedbacks. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 10732-10756.                | 3.3 | 10        |
| 143 | Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission<br>Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, .                 | 3.3 | 10        |
| 144 | Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties. Journal of Geophysical Research, 2009, 114, .                                                    | 3.3 | 9         |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles. Atmospheric Environment, 2016, 147, 133-156.                                                          | 4.1  | 9         |
| 146 | Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment. Atmospheric Environment, 2018, 180, 226-233.                                                              | 4.1  | 8         |
| 147 | A three-dimensional regional modeling study of the impact of clouds on sulfate distributions during TRACE-P. Journal of Geophysical Research, 2004, 109, .                                                                                              | 3.3  | 7         |
| 148 | A study of regional-scale variability of in situ and model-generated tropospheric trace gases: Insights<br>into observational requirements for a satellite in geostationary orbit. Atmospheric Environment,<br>2011, 45, 4682-4694.                     | 4.1  | 7         |
| 149 | Biogenic isoprene emissions driven by regional weather predictions using different initialization<br>methods: case studies during the SEAC <sup>4</sup> RS and DISCOVER-AQ<br>airborne campaigns. Geoscientific Model Development, 2017, 10, 3085-3104. | 3.6  | 6         |
| 150 | Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements. Atmospheric Measurement Techniques, 2021, 14, 4639-4655.                                                                    | 3.1  | 6         |
| 151 | Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment, 2022, 269, 118854.                                                                                                                                  | 4.1  | 6         |
| 152 | An assessment of ozone photochemistry in the central/eastern North Pacific as determined from multiyear airborne field studies. Journal of Geophysical Research, 2003, 108, PEM 9-1.                                                                    | 3.3  | 5         |
| 153 | Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites<br>Using Radonâ€222 and Back Trajectories. Journal of Geophysical Research D: Atmospheres, 2017, 122,<br>13,525.                                      | 3.3  | 5         |
| 154 | Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the<br>southeastern US – PartÂ1: An overview. Atmospheric Chemistry and Physics, 2021, 21, 11013-11040.                                                    | 4.9  | 5         |
| 155 | Can Column Formaldehyde Observations Inform Air Quality Monitoring Strategies for Ozone and<br>Related Photochemical Oxidants?. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                            | 3.3  | 5         |
| 156 | Countries of the Indo-Gangetic Plain must unite against air pollution. Nature, 2021, 598, 415-415.                                                                                                                                                      | 27.8 | 4         |
| 157 | Airborne measurements of cirrusâ€activated C 2 Cl 4 depletion in the upper troposphere with evidence<br>against Cl reactions. Geophysical Research Letters, 2003, 30, .                                                                                 | 4.0  | 3         |
| 158 | Impact of Aerosols From Urban and Shipping Emission Sources on Terrestrial Carbon Uptake and<br>Evapotranspiration: A Case Study in East Asia. Journal of Geophysical Research D: Atmospheres, 2020,<br>125, e2019JD030818.                             | 3.3  | 3         |