Tao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	13.7	899
2	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	13.7	456
3	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumâ^'sulfur batteries. Nano Energy, 2017, 38, 239-248.	16.0	314
4	Emerging non-lithium ion batteries. Energy Storage Materials, 2016, 4, 103-129.	18.0	252
5	Acid and Alkaline Dual Stimuli-Responsive Mechanized Hollow Mesoporous Silica Nanoparticles as Smart Nanocontainers for Intelligent Anticorrosion Coatings. ACS Nano, 2013, 7, 11397-11408.	14.6	234
6	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	9.1	223
7	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 4868-4876.	14.6	222
8	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283.	14.6	213
9	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846.	9.1	206
10	Walnutâ€Like Multicore–Shell MnO Encapsulated Nitrogenâ€Rich Carbon Nanocapsules as Anode Material for Longâ€Cycling and Softâ€Packed Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1800003.	14.9	191
11	Highly Branched VS ₄ Nanodendrites with 1D Atomicâ€Chain Structure as a Promising Cathode Material for Longâ€Cycling Magnesium Batteries. Advanced Materials, 2018, 30, e1802563.	21.0	187
12	Experimental and Theoretical Study on the Inhibition Performances of Quinoxaline and Its Derivatives for the Corrosion of Mild Steel in Hydrochloric Acid. Industrial & Engineering Chemistry Research, 2012, 51, 6377-6386.	3.7	165
13	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	5.6	154
14	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Materials, 2018, 14, 246-252.	18.0	120
15	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO _{2–<i>x</i>} Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano, 2018, 12, 12492-12502.	14.6	116
16	Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy, 2016, 20, 305-314.	16.0	107
17	An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers. Nanotechnology, 2012, 23, 505705.	2.6	96
18	Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating. Journal of Materials Chemistry A, 2015, 3, 9510-9516.	10.3	89

ΤΑΟ CHEN

#	Article	IF	CITATIONS
19	Graphene quantum dot-capped mesoporous silica nanoparticles through an acid-cleavable acetal bond for intracellular drug delivery and imaging. Journal of Materials Chemistry B, 2014, 2, 4979.	5.8	88
20	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	10.3	85
21	pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corrosion inhibitor. Nanotechnology, 2012, 23, 235605.	2.6	81
22	Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9, 11841-11845.	5.6	75
23	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	6.7	73
24	Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites. Energy Storage Materials, 2019, 23, 741-748.	18.0	69
25	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Research, 2019, 12, 1713-1719.	10.4	64
26	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	5.6	57
27	Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes. Chemical Communications, 2013, 49, 6555.	4.1	55
28	Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy, 2017, 33, 229-237.	16.0	55
29	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	8.0	52
30	Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy, 2021, 80, 105510.	16.0	51
31	High-Performance Li–Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 25232-25238.	8.0	50
32	Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy, 2018, 53, 91-96.	16.0	44
33	Mechanized silica nanoparticles based on reversible bistable [2]pseudorotaxanes as supramolecular nanovalves for multistage pH-controlled release. Chemical Communications, 2014, 50, 5068-5071.	4.1	43
34	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale, 2017, 9, 1972-1977.	5.6	42
35	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Research, 2018, 11, 6436-6446.	10.4	38
36	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. Journal of Materials Chemistry A, 2016, 4, 15041-15048.	10.3	35

ΤΑΟ CHEN

#	Article	IF	CITATIONS
37	Facile preparation of ultrafine Ti ₄ O ₇ nanoparticle-embedded porous carbon for high areal capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 20083-20092.	10.3	35
38	Chelation-assisted formation of multi-yolk–shell Co ₄ N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 20302-20309.	10.3	29
39	Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells. Cell Reports Physical Science, 2020, 1, 100001.	5.6	28
40	Synergistic Cation–Anion Regulation of Polysulfides by Zwitterionic Polymer Binder for Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	27
41	Unveiling the Synergistic Effect of Ferroelectric Polarization and Domain Configuration for Reversible Zinc Metal Anodes. Advanced Science, 2022, 9, e2105980.	11.2	25
42	The dealloying–lithiation/delithiation–realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries. Nanoscale, 2019, 11, 8803-8811.	5.6	24
43	Electrowetting-driven droplet shrinkage with tunable focus property. Optoelectronics Letters, 2022, 18, 166-169.	0.8	1