
Carmelina Spano'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: Evidence of their internalization and translocation. Plant Physiology and Biochemistry, 2022, 172, 158-166.	5.8	43
2	Synchrotron Radiation Spectroscopy and Transmission Electron Microscopy Techniques to Evaluate TiO2 NPs Incorporation, Speciation, and Impact on Root Cells Ultrastructure of Pisum sativum L. Plants. Nanomaterials, 2021, 11, 921.	4.1	10
3	TiO2 nanoparticles in a biosolid-amended soil and their implication in soil nutrients, microorganisms and Pisum sativum nutrition. Ecotoxicology and Environmental Safety, 2020, 190, 110095.	6.0	29
4	Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry, 2020, 149, 170-177.	5.8	199
5	TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides. Environmental Science and Pollution Research, 2019, 26, 29872-29882.	5.3	16
6	Modulation of the defence responses against Cd in willow species through a multifaceted analysis. Plant Physiology and Biochemistry, 2019, 142, 125-136.	5.8	6
7	Seasonal and microclimatic influences on the ecophysiology of Mediterranean coastal dune plants. Estuarine, Coastal and Shelf Science, 2019, 219, 317-327.	2.1	8
8	An integrated approach to highlight biological responses of Pisum sativum root to nano-TiO2 exposure in a biosolid-amended agricultural soil. Science of the Total Environment, 2019, 650, 2705-2716.	8.0	36
9	Study of functional and physiological response of co-occurring shrub species to the Mediterranean climate. Saudi Journal of Biological Sciences, 2019, 26, 1668-1675.	3.8	6
10	Aerobic environment ensures viability and anti-oxidant capacity when seeds are wet with negative effect when moist: implications for persistence in the soil. Seed Science Research, 2018, 28, 16-23.	1.7	11
11	Phytochemicals and antioxidant capacity in four Italian traditional maize (<i>Zea mays</i> L.) varieties. International Journal of Food Sciences and Nutrition, 2017, 68, 515-524.	2.8	21
12	Indole-3-acetic acid metabolism and growth in young kiwifruit berry. Plant Growth Regulation, 2017, 82, 505-515.	3.4	6
13	Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L Environmental and Experimental Botany, 2016, 130, 11-21.	4.2	57
14	Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity. Estuarine, Coastal and Shelf Science, 2016, 169, 173-181.	2.1	10
15	Morpho-anatomical and physiological traits of Agrostis castellana living in an active geothermal alteration field. Biologia (Poland), 2015, 70, 744-752.	1.5	3
16	Stress-induced changes to the flora in a geothermal field in central Italy. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	4
17	Response of Pteris vittata to different cadmium treatments. Acta Physiologiae Plantarum, 2014, 36, 767-775.	2.1	39
18	Plant adaptation to extreme environments: The example of Cistus salviifolius of an active geothermal alteration field. Comptes Rendus - Biologies, 2014, 337, 101-110.	0.2	13

CARMELINA SPANO'

#	Article	IF	CITATIONS
19	Calystegia soldanella: dune versus laboratory plants to highlight key adaptive physiological traits. Acta Physiologiae Plantarum, 2013, 35, 1329-1336.	2.1	18
20	Anthemis maritima L. in different coastal habitats: A tool to explore plant plasticity. Estuarine, Coastal and Shelf Science, 2013, 129, 105-111.	2.1	19
21	Ageing in embryos from wheat grains stored at different temperatures: oxidative stress and antioxidant response. Functional Plant Biology, 2011, 38, 624.	2.1	13
22	Responses to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains. Plant Physiology and Biochemistry, 2011, 49, 363-367.	5.8	12
23	RNases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions. Journal of Plant Physiology, 2007, 164, 487-495.	3.5	24
24	Ribonucleases during ripening and after-ripening in Triticum durum embryos. Journal of Plant Physiology, 2002, 159, 935-937.	3.5	4
25	Ribonucleases during cold acclimation in winter and spring wheats. Plant Science, 2002, 162, 809-815.	3.6	10