List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5736382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case Report: Cariprazine in a Patient With Schizophrenia, Substance Abuse, and Cognitive Dysfunction. Frontiers in Psychiatry, 2021, 12, 727666.	2.6	12
2	The More, the Merrier…? Antipsychotic Polypharmacy Treatment Strategies in Schizophrenia From a Pharmacology Perspective. Frontiers in Psychiatry, 2021, 12, 760181.	2.6	11
3	Preclinical Pharmacology of [2-(3-Fluoro-5-Methanesulfonyl-phenoxy)Ethyl](Propyl)amine (IRL790), a Novel Dopamine Transmission Modulator for the Treatment of Motor and Psychiatric Complications in Parkinson Disease. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 113-125.	2.5	13
4	(3S)â€3â€(2,3â€difluorophenyl)â€3â€methoxypyrrolidine (IRL752) —a Novel Cortical-Preferring Catecholamine Transmission- and Cognition-Promoting Agent. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 404-419.	2.5	3
5	Does <i>In Vitro</i> Potency Predict Clinically Efficacious Concentrations?. Clinical Pharmacology and Therapeutics, 2020, 108, 298-305.	4.7	26
6	Long-term incidence of serious fall-related injuries after bariatric surgery in Swedish obese subjects. International Journal of Obesity, 2019, 43, 933-937.	3.4	17
7	Revisions of Gastric Bypass—A Moral Obligation—Reply. JAMA Surgery, 2019, 154, 975.	4.3	2
8	Dose-Response-Time Data Analysis: An Underexploited Trinity. Pharmacological Reviews, 2019, 71, 89-122.	16.0	17
9	Reoperations After Bariatric Surgery in 26 Years of Follow-up of the Swedish Obese Subjects Study. JAMA Surgery, 2019, 154, 319.	4.3	60
10	In vivo potency revisited $\hat{a} \in$ "Keep the target in sight. , 2018, 184, 177-188.		24
11	Lost in translation: What's in an EC? Innovative PK/PD reasoning in the drug development context. European Journal of Pharmacology, 2018, 835, 154-161.	3.5	9
12	Long-term incidence of microvascular disease after bariatric surgery or usual care in patients with obesity, stratified by baseline glycaemic status: a post-hoc analysis of participants from the Swedish Obese Subjects study. Lancet Diabetes and Endocrinology,the, 2017, 5, 271-279.	11.4	111
13	Weight Perturbation Alters Leptin Signal Transduction in a Region-Specific Manner throughout the Brain. PLoS ONE, 2017, 12, e0168226.	2.5	6
14	Deletion of Gpr55 Results in Subtle Effects on Energy Metabolism, Motor Activity and Thermal Pain Sensation. PLoS ONE, 2016, 11, e0167965.	2.5	24
15	Looking back (and in)to the future: A personal reflection on â€ ⁻ Serotonin autoreceptor function and antidepressant drug action' (Hjorth et al., 2000). Journal of Psychopharmacology, 2016, 30, 1129-1136.	4.0	5
16	Pattern Recognition in Pharmacodynamic Data Analysis. AAPS Journal, 2016, 18, 64-91.	4.4	10
17	A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates. Neuropharmacology, 2016, 101, 519-530.	4.1	12
18	Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach. Pharmacology Research and Perspectives, 2015, 3, e00143.	2.4	19

#	Article	IF	CITATIONS
19	Modeling energy intake by adding homeostatic feedback and drug intervention. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 79-96.	1.8	8
20	Baseline Anandamide Levels and Body Weight Impact the Weight Loss Effect of CB1 Receptor Antagonism in Male Rats. Endocrinology, 2015, 156, 1237-1241.	2.8	4
21	Modeling and design of challenge tests: Inflammatory and metabolic biomarker study examples. European Journal of Pharmaceutical Sciences, 2015, 67, 144-159.	4.0	8
22	Effects of a novel MC4R agonist on maintenance of reduced body weight in dietâ€induced obese mice. Obesity, 2014, 22, 1287-1295.	3.0	15
23	Cardiovascular effects in the Sprague-Dawley rat of 8â^'hydroxyâ^'2(di- N-propylamino) tetralin, a selective 5â^'hydroxytryptamine receptor agonist. Journal of Pharmacy and Pharmacology, 2011, 37, 263-265.	2.4	12
24	Binding properties of antagonists to Cannabinoid receptors in intact cells. Fundamental and Clinical Pharmacology, 2011, 25, 200-210.	1.9	12
25	Novel thioamide derivatives as neutral CB1 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 479-482.	2.2	25
26	The Selective 5-Hydroxytryptamine 1A Antagonist, AZD7371 [3(R)-(N,N-Dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate Monohydrate] (Robalzotan Tartrate Monohydrate), Inhibits Visceral Pain-Related Visceromotor, but Not Action Cardiovascular, Responses to Colorectal Distension in Rats. Journal of Pharmacology	2.5	19
27	and Experimental Therapeutics, 2009, 329, 1048-1055. T1252 The Selective 5-HT1A Antagonist, AZD7371 (Robalzotan Tartrate Monohydrate), Inhibits Pain-Related Visceromotor, But Not Autonomic Cardiovascular, Responses to Colorectal Distension in Rats. Gastroenterology, 2009, 136, A-532.	1.3	0
28	The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 2007, 152, 1092-1101.	5.4	1,287
29	Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Letters, 2005, 579, 259-264.	2.8	116
30	Osteoporosis in MCHR1-deficient mice. Biochemical and Biophysical Research Communications, 2004, 318, 964-969.	2.1	37
31	Effects of selective serotonin and serotonin/noradrenaline reuptake inhibitors on extracellular serotonin in rat diencephalon and frontal cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 297-305.	3.0	56
32	Effects on drug disposition, brain monoamines and behavior after chronic treatment with the antidepressant venlafaxine in rats with experimental hepatic encephalopathy. European Neuropsychopharmacology, 2002, 12, 327-336.	0.7	11
33	Neocortical Dialysate Monoamines of Rats After Acute, Subacute, and Chronic Liver Shunt. Journal of Neurochemistry, 2002, 64, 1238-1244.	3.9	42
34	Effect of Halving the Dose of Venlafaxine to Adjust for Putative Pharmacokinetic and Pharmacodynamic Changes in an Animal Model of Chronic Hepatic Encephalopathy. Clinical Neuropharmacology, 2001, 24, 324-333.	0.7	4
35	Dynamic and Kinetic Effects of Chronic Citalopram Treatment in Experimental Hepatic Encephalopathy. Clinical Neuropharmacology, 2000, 23, 304-317.	0.7	8
36	Interaction of the antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 406-412.	3.0	40

#	Article	IF	CITATIONS
37	Introduction — Neuroregulation of serotoninergic systems: basic and clinical perspectives. Journal of Psychopharmacology, 2000, 14, 99-99.	4.0	0
38	Serotonin autoreceptor function and antidepressant drug action. Journal of Psychopharmacology, 2000, 14, 177-185.	4.0	167
39	Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Research, 1999, 835, 224-228.	2.2	23
40	The role of 5-HT1A autoreceptors and α1-adrenoceptors in the modulation of 5-HT release—III. Clozapine and the novel putative antipsychotic S 16924. Neuropharmacology, 1998, 37, 349-356.	4.1	17
41	Systemic PCP treatment elevates brain extracellular 5-HT. NeuroReport, 1998, 9, 2985-2988.	1.2	108
42	Effect of Citalopram on Brain Serotonin Release in Experimental Hepatic Encephalopathy. Clinical Neuropharmacology, 1997, 20, 511-522.	0.7	15
43	W ay 100635-induced Augmentation of the 5-HT-elevating Action of Citalopram: Relative Importance of the Dose of the 5-HT 1A (Auto)receptor Blocker Versus that of the 5-HT Reuptake Inhibitor. Neuropharmacology, 1997, 36, 461-465.	4.1	77
44	Autoreceptor Antagonists Enhance the Effect of the Reuptake Inhibitor Citalopram on Extracellular 5-HT: this Effect Persists After Repeated Citalopram Treatment. Neuropharmacology, 1997, 36, 475-482.	4.1	57
45	Potassium-evoked neuronal release of serotonin in experimental chronic portal-systemic encephalopathy. Metabolic Brain Disease, 1997, 12, 193-202.	2.9	12
46	p-chloroamphetamine- and d-fenfluramine-induced brain serotonin release in experimental portal-systemic encephalopathy. Metabolic Brain Disease, 1997, 12, 229-236.	2.9	3
47	Potassium-Evoked Neuronal Release of Serotonin in Experimental Chronic Portal-Systemic Encephalopathy. Metabolic Brain Disease, 1997, 12, 193-202.	2.9	1
48	Effects of Ammonia and L-Tryptophan Loading on Brain Extracellular 5-HT and 5-HIAA Levels in Chronic Experimental Hepatic Encephalopathy. , 1997, , 201-207.		0
49	10-Substituted 11-Oxygenated (R)-Aporphines:Â Synthesis, Pharmacology, and Modeling of 5-HT1AReceptor Interactions. Journal of Medicinal Chemistry, 1996, 39, 3491-3502.	6.4	34
50	(â^')-Pindolol, but not buspirone, potentiates the citalopram-induced rise in extracellular 5-hydroxytryptamine. European Journal of Pharmacology, 1996, 303, 183-186.	3.5	68
51	trans-2-Aryl-N,N-dipropylcyclopropylamines:Â Synthesis and Interactions with 5-HT1AReceptors. Journal of Medicinal Chemistry, 1996, 39, 1485-1493.	6.4	30
52	Ammonium acetate challenge in experimental chronic hepatic encephalopathy induces a transient increase of brain 5-HT release in vivo. European Neuropsychopharmacology, 1996, 6, 317-322.	0.7	19
53	Raphe 5-HT1A autoreceptors, but not postsynaptic 5-HT1A receptors or β-adrenoceptors, restrain the citalopram-induced increase in extracellular 5-hydroxytryptamine in vivo. European Journal of Pharmacology, 1996, 316, 43-47.	3.5	58
54	11-Substituted (R)-Aporphines:Â Synthesis, Pharmacology, and Modeling of D2Aand 5-HT1AReceptor Interactions. Journal of Medicinal Chemistry, 1996, 39, 3503-3513.	6.4	35

#	Article	IF	CITATIONS
55	Acute effects of L-tryptophan on brain extracellular 5-HT and 5-HIAA levels in chronic experimental portal-systemic encephalopathy. Metabolic Brain Disease, 1996, 11, 269-278.	2.9	14
56	Changes in the acoustic startle response and prepulse inhibition of acoustic startle in rats after local injection of pertussis toxin into the ventral tegmental area. Psychopharmacology, 1995, 119, 71-78.	3.1	21
57	Effect of chronic administration of the selective serotonin (5-HT) uptake inhibitor citalopram on extracellular 5-HT and apparent autoreceptor sensitivity in rat forebrain in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 597-606.	3.0	55
58	Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse, 1995, 19, 170-176.	1.2	67
59	(R)-11-Hydroxy- and (R)-11-Hydroxy-10-methylaporphine: Synthesis, Pharmacology, and Modeling of D2A and 5-HT1A Receptor Interactions. Journal of Medicinal Chemistry, 1995, 38, 647-658.	6.4	49
60	Differential inhibition of serotonin release by 5-HT and NA reuptake blockers after systemic administration. Neuropharmacology, 1995, 34, 89-96.	4.1	51
61	Studies on the role of 5-HT1A autoreceptors and α1-adrenoceptors in the inhibition of 5-HT release—I. BMY7378 and prazosin. Neuropharmacology, 1995, 34, 615-620.	4.1	63
62	Catecholamine-Containing Biodegradable Microsphere Implants: An Overview of Experimental Studies in Dopamine-Lesioned Rats. Advances in Behavioral Biology, 1995, , 421-427.	0.2	1
63	Catecholamine-containing biodegradable microsphere implants as a novel approach in the treatment of CNS neurodegenerative disease. Molecular Neurobiology, 1994, 9, 191-205.	4.0	19
64	Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. European Journal of Pharmacology, 1994, 260, 251-255.	3.5	104
65	Lack of 5-HT1A autoreceptor desensitization following chronic citalopram treatment, as determined by in vivo microdialysis. Neuropharmacology, 1994, 33, 331-334.	4.1	74
66	Effects of long-lasting voluntary running on the cerebral levels of dopamine, serotonin and their metabolites in the spontaneously hypertensive rat. Life Sciences, 1994, 54, 855-861.	4.3	23
67	Synthesis of (+)-(R)- and (â^')-(S)-5-hydroxy-2-methyl-2-dipropylaminotetralin: Effects on rat hippocampal output of 5-HT, 5-HIAA, and DOPAC as determined by in vivo microdialysis. Chirality, 1993, 5, 112-119.	2.6	4
68	Local infusion of the selective 5HT-1B agonist CP-93,129 facilitates striatal dopamine release in vivo. Synapse, 1993, 15, 90-92.	1.2	66
69	Serotonin 5-HT1AAutoreceptor Blockade Potentiates the Ability of the 5-HT Reuptake Inhibitor Citalopram to Increase Nerve Terminal Output of 5-HT In Vivo: A Microdialysis Study. Journal of Neurochemistry, 1993, 60, 776-779.	3.9	234
70	Effect of acute and repeated administration of 5-HT1A receptor agonists on 5-HT release in rat brain in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 339-46.	3.0	54
71	5-HT1A autoreceptor-mediated effects of the amperozide congeners, FG5865 and FG5893, on rat brain 5-hydroxytryptamine neurochemistry in vivo. European Journal of Pharmacology, 1993, 238, 357-367.	3.5	5
72	(â^')-penbutolol as a blocker of central 5-HT1A receptor-mediated responses. European Journal of Pharmacology, 1992, 222, 121-127.	3.5	19

#	Article	IF	CITATIONS
73	Acute Reserpine Treatment Increases Rat Brain Serotonin Synthesis Via a Nerve Impulse-Dependent Mechanism. Journal of Neurochemistry, 1992, 58, 772-775.	3.9	11
74	Differences in the In Vitro and In Vivo 5-Hydroxytryptamine Extraction Performance Among Three Common Microdialysis Membranes. Journal of Neurochemistry, 1992, 59, 1778-1785.	3.9	32
75	?2-Adrenoceptor modulation of rat ventral hippocampal 5-hydroxytryptamine release in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 137-143.	3.0	68
76	The influence of serotoninergic drugs on dopaminergic neurotransmission in rat substantia nigra, striatum and limbic forebrain in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 346, 12-19.	3.0	37
77	Dopamine fiber growth induction by implantation of synthetic dopamine-containing microspheres in rats with experimental hemi-parkinsonism. Molecular and Chemical Neuropathology, 1992, 16, 123-141.	1.0	13
78	Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sciences, 1991, 48, 1779-1786.	4.3	182
79	The putative 5-HT1B receptor agonist CP-93,129 suppresses rat hippocampal 5-HT release in vivo: comparison with RU 24969. European Journal of Pharmacology, 1991, 209, 249-252.	3.5	95
80	Single-dose 8-OH-DPAT pretreatment does not Induce tachyphylaxis to the 5-HT release-reducing effect of 5-HT1A autoreceptor agonists. European Journal of Pharmacology, 1991, 199, 237-242.	3.5	12
81	Effects of sexual interactions on the in vivo rate of monoamine synthesis in forebrain regions of the male rat. Behavioural Brain Research, 1991, 46, 117-122.	2.2	21
82	Microencapsulated Dopamine (DA)-Induced Restitution of Function in 6-OHDA-Denervated Rat Striatumin vivo: Comparison Between Two Microsphere Excipients. Journal of Neural Transplantation & Plasticity, 1991, 2, 165-173.	0.7	14
83	Cis-(+)-8-OH-1-CH3-DPAT, (+)ALK-3, a novel stereoselective pharmacological probe for characterizing 5-HT release-controlling 5-HT1A autoreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 341, 149-57.	3.0	12
84	Application of brain microdialysis to study the pharmacology of the 5-HT1A autoreceptor. Journal of Neuroscience Methods, 1990, 34, 83-90.	2.5	101
85	Stereoselectivity of Drug Receptor Interactions. Drug Information Journal, 1990, 24, 485-496.	0.5	1
86	Effects of MDL 73005EF on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. European Journal of Pharmacology, 1990, 191, 391-400.	3.5	48
87	Mixed agonist/antagonist properties of NAN-190 at 5-HT1A Receptors: Behavioural and in vivo brain microdialysis studies. Life Sciences, 1990, 46, 955-963.	4.3	123
88	Effects of 5-HT1A receptor agonists and L-5-HTP in Montgomery's conflict test. Pharmacology Biochemistry and Behavior, 1989, 32, 259-265.	2.9	98
89	Synthesis and Release of Dopamine in Rat Brain: Comparison Between Substantia Nigra Pars Compacta, Pars Reticulata, and Striatum. Journal of Neurochemistry, 1989, 52, 1170-1182.	3.9	84
90	Median raphe, but not dorsal raphe, application of the 5-HT1A agonist 8-OH-DPAT stimulates rat motor activity. European Journal of Pharmacology, 1989, 160, 303-307.	3.5	66

#	Article	IF	CITATIONS
91	Partial postsynaptic 5-HT1A agonist properties of the novel stereoselective 8-OH-DPAT analogue (+)cis-8-hydroxy-1-methyl-2-(di-n-propylamino)tetralin, (+)ALK-3. European Journal of Pharmacology, 1989, 170, 269-274.	3.5	8
92	Pharmacological characterization of 8â€OHâ€DPATâ€induced inhibition of rat hippocampal 5â€HT release <i>in vivo</i> as measured by microdialysis. British Journal of Pharmacology, 1989, 98, 989-997.	5.4	128
93	In vivo receptor binding, neurochemical and functional studies with the dopamine D-1 receptor antagonist SCH 23390. Journal of Neural Transmission, 1988, 72, 83-97.	2.8	34
94	Is stimulation of both D1 and D2 receptors necessary for the expression of dopamine-mediated behaviors?. Pharmacology Biochemistry and Behavior, 1988, 30, 189-193.	2.9	167
95	The 5-HT1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 338, 463-471.	3.0	278
96	Dopamine (DA) autoreceptor efficacy of 3-PPP enantiomers after short-term synaptic DA deprivation. European Journal of Pharmacology, 1988, 152, 207-215.	3.5	16
97	N,N-Dialkylated monophenolic trans-2-phenylcyclopropylamines: novel central 5-hydroxytryptamine-receptor agonists. Journal of Medicinal Chemistry, 1988, 31, 92-99.	6.4	33
98	Implantable microencapsulated dopamine (DA): A new approach for slow-release DA delivery into brain tissue. Neuroscience Letters, 1988, 92, 303-309.	2.1	50
99	Injection of capsaicin into the nucleus raphe dorsalis elicits heat loss in the rat. Neuroscience Letters, 1987, 75, 199-204.	2.1	12
100	Region-selective activation of brain monoamine synthesis by sexual activity in the male rat. European Journal of Pharmacology, 1987, 144, 77-82.	3.5	41
101	C1- and C3-methyl-substituted derivatives of 7-hydroxy-2-(di-n-propylamino)tetralin: activities at central dopamine receptors. Journal of Medicinal Chemistry, 1987, 30, 1827-1837.	6.4	14
102	(+)-cis-8-Hydroxy-1-methyl-2-(di-n-propylamino)tetralin: a potent and highly stereoselective 5-hydroxytryptamine receptor agonist. Journal of Medicinal Chemistry, 1987, 30, 2105-2109.	6.4	37
103	Postsynaptic dopamine (DA) receptor stimulator properties of the putative DA autoreceptor-selective agonist B-HT 920 uncovered by co-treatment with the D-1 agonist SK&F 38393. Psychopharmacology, 1987, 93, 534-7.	3.1	41
104	Anxiolytic-like action of the 3-PPP enantiomers in the Vogel conflict paradigm. Psychopharmacology, 1987, 92, 371-375.	3.1	23
105	Biphasic effect of I-5-HTP in the Vogel conflict model. Psychopharmacology, 1987, 92, 96-99.	3.1	28
106	Separation of dopaminergic and serotonergic inhibitory mechanisms in the mediation of estrogen-induced lordosis behaviour in the rat. Pharmacology Biochemistry and Behavior, 1987, 27, 93-98.	2.9	39
107	Suppression of lordosis behavior by the putative 5-HT receptor agonist 8-OH-DPAT in the rat. European Journal of Pharmacology, 1986, 124, 361-363.	3.5	58
108	The putatively selective dopamine autoreceptor antagonists (+)-AJ 76 and (+)-UH 232 stimulate prolactin release in rats. European Journal of Pharmacology, 1986, 130, 237-242.	3.5	6

#	Article	IF	CITATIONS
109	Is pindolol a mixed agonist-antagonist at central serotonin (5-HT) receptors?. European Journal of Pharmacology, 1986, 129, 131-138.	3.5	123
110	Stereoselective inhibition of prolactin secretion by (â^')-HW-165, a novel 3-PPP congener; further support for similarities between central DA autoreceptors and pituitary lactotroph DA receptors. European Journal of Pharmacology, 1986, 125, 421-428.	3.5	8
111	Anticonflict effects of low doses of the dopamine agonist apomorphine in the rat. Pharmacology Biochemistry and Behavior, 1986, 24, 237-240.	2.9	34
112	Central dopaminergic properties of HW-165 and its enantiomers; Trans-octahydrobenzo(f)quinoline congeners of 3-PPP. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 333, 205-218.	3.0	19
113	(+)-UH 232 and (+)-UH 242: Novel stereoselective dopamine receptor antagonists with preferential action on autoreceptors. Journal of Neural Transmission, 1986, 65, 1-27.	2.8	46
114	Dopamine receptor agonists: Mechanisms underlying autoreceptor selectivity II. Theoretical considerations. Journal of Neural Transmission, 1985, 62, 171-207.	2.8	135
115	Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. Journal of Neural Transmission, 1985, 61, 131-135.	2.8	226
116	Sub-chronic administration of (?)-3-PPP and central dopamine receptor sensitivity changes. Journal of Neural Transmission, 1985, 64, 187-198.	2.8	11
117	Dopamine-receptor agonists: Mechanisms underlying autoreceptor selectivity. Journal of Neural Transmission, 1985, 62, 1-52.	2.8	194
118	Lack of functional evidence for the involvement of sigma opiate receptors in the actions of the 3-PPP enantiomers on central dopaminergic systems: Discrepancies between and observations. Life Sciences, 1985, 37, 673-684.	4.3	37
119	(â~')-Pindolol stereospecifically inhibits rat brain serotonin (5-HT) synthesis. Neuropharmacology, 1985, 24, 1143-1146.	4.1	42
120	Resolved monophenolic 2-aminotetralins and 1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines: structural and stereochemical considerations for centrally acting pre- and postsynaptic dopamine-receptor agonists. Journal of Medicinal Chemistry, 1985, 28, 215-225.	6.4	72
121	Novel dopamine receptor agonists and antagonists with preferential action on autoreceptors. Journal of Medicinal Chemistry, 1985, 28, 1049-1053.	6.4	40
122	Dopamine receptor-mediated hypothermia induced in rats by (+)-, but not by (—)-3-PPP. European Journal of Pharmacology, 1985, 107, 299-304.	3.5	18
123	Differential effects of the enantiomers of 3-PPP on dopamine D1-receptors of isolated rabbit retina. Journal of Neural Transmission, 1984, 59, 1-7.	2.8	8
124	8-Hydroxy-2-(alkylamino)tetralins and related compounds as central 5-hydroxytryptamine receptor agonists. Journal of Medicinal Chemistry, 1984, 27, 45-51.	6.4	69
125	C1-Methylated 5-hydroxy-2-(dipropylamino)tetralins: central dopamine-receptor stimulating activity. Journal of Medicinal Chemistry, 1984, 27, 1003-1007.	6.4	11
126	Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). European Journal of Pharmacology, 1984, 105, 365-368.	3.5	215

#	Article	IF	CITATIONS
127	Central monoaminergic effects of two aporphine analogues to the putative serotonin-receptor agonist, 8-hydroxy-2-di-n-propylaminotetralin. Neuropharmacology, 1984, 23, 1187-1190.	4.1	4
128	Resolved 3-(3-Hydroxyphenyl)-N-n-propylpiperidine and its analogs: central dopamine receptor activity. Journal of Medicinal Chemistry, 1984, 27, 1030-1036.	6.4	80
129	Central dopamine receptor agonist and antagonist actions of the enantiomers of 3-PPP. Psychopharmacology, 1983, 81, 89-99.	3.1	197
130	The effect of the enantiomers of 3-PPP on conditioned avoidance responding in the rat. Psychopharmacology, 1983, 81, 14-17.	3.1	18
131	Monophenolic octahydrobenzo[f]quinolines: central dopamine- and serotonin-receptor stimulating activity. Journal of Medicinal Chemistry, 1982, 25, 925-931.	6.4	35
132	Buspirone: Effects on central monoaminergic transmission - possible relevance to animal experimental and clinical findings. European Journal of Pharmacology, 1982, 83, 299-303.	3.5	134
133	ls 3-PPP a potential antipsychotic agent? Evidence from animal behavioural studies. European Journal of Pharmacology, 1982, 83, 131-134.	3.5	22
134	A behavioural study of the changes in the central nervous system of mice after subchronic treatment with the selective dopamine autoreceptor agonist 3-PPP (dl-3-[3-hydroxyphenyl]-N-n-propylpiperidine). Journal of Neural Transmission, 1982, 53, 233-245.	2.8	10
135	8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. Journal of Neural Transmission, 1982, 55, 169-188.	2.8	511
136	3-Phenylpiperidines. Central dopamine-autoreceptor stimulating activity. Journal of Medicinal Chemistry, 1981, 24, 1475-1482.	6.4	99
137	3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sciences, 1981, 28, 1225-1238.	4.3	225
138	Monophenolic 2-(dipropylamino)indans and related compounds: central dopamine-receptor stimulating activity. Journal of Medicinal Chemistry, 1981, 24, 429-434.	6.4	33
139	8-Hydroxy-2-(dipropylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. Journal of Medicinal Chemistry, 1981, 24, 921-923.	6.4	371
140	Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacology Biochemistry and Behavior, 1981, 15, 785-792.	2.9	311
141	N-Alkylated 2-aminotetralins: central dopamine-receptor stimulating activity. Journal of Medicinal Chemistry, 1979, 22, 1469-1475.	6.4	80
142	Pivaloyl esters of N,N-dialkylated dopamine congeners. Central dopamine-receptor stimulating activity. Journal of Medicinal Chemistry, 1978, 21, 864-867.	6.4	15