Jia Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573573/publications.pdf Version: 2024-02-01

ILA SHENC

#	Article	IF	CITATIONS
1	Structure-guided development of Pb2+-binding DNA aptamers. Scientific Reports, 2022, 12, 460.	3.3	8
2	Crystallization and Structural Determination of 8–17 DNAzyme. Methods in Molecular Biology, 2022, 2439, 117-130.	0.9	1
3	Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats. International Journal of Molecular Sciences, 2022, 23, 3321.	4.1	2
4	Novel efficacious microRNA-30c analogs reduce apolipoprotein B secretion in human hepatoma and primary hepatocyte cells. Journal of Biological Chemistry, 2022, 298, 101813.	3.4	6
5	Fluorescent Aptaswitch for Detection of Lead Ions. ACS Applied Bio Materials, 2022, 5, 5089-5093.	4.6	5
6	Base Pairing and Functional Insights into <i>N</i> ³ -Methylcytidine (m ³ C) in RNA. ACS Chemical Biology, 2021, 16, 76-85.	3.4	19
7	A mini DNA–RNA hybrid origami nanobrick. Nanoscale Advances, 2021, 3, 4048-4051.	4.6	10
8	Bio-orthogonal chemistry enables solid phase synthesis and HPLC and gel-free purification of long RNA oligonucleotides. Chemical Communications, 2021, 57, 4263-4266.	4.1	9
9	Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chemical Biology, 2021, 2, 990-1003.	4.1	13
10	Structural Effects of Modifications on Interactions of Thrombin Binding Aptamer with Thrombin: A Molecular Dynamic Study. Biophysical Journal, 2021, 120, 176a.	0.5	0
11	DNA Functionality with Photoswitchable Hydrazone Cytidine**. Chemistry - A European Journal, 2021, 27, 8372-8379.	3.3	1
12	The origin of translation. Nature Chemistry, 2021, 13, 725-726.	13.6	2
13	Structural and Binding Effects of Chemical Modifications on Thrombin Binding Aptamer (TBA). Molecules, 2021, 26, 4620.	3.8	4
14	Synthesis of <i>N⁴</i> â€Methylcytidine (m ⁴ C) and <i>N⁴,N⁴â€</i> Dimethylcytidine (m ⁴ ₂ C) Modified RNA. Current Protocols, 2021, 1, e248.	2.9	1
15	Nonâ€Chromatographic Purification of Synthetic RNA Using Bioâ€Orthogonal Chemistry. Current Protocols, 2021, 1, e247.	2.9	0
16	Synthesis and Functionality Study of Photoswitchable Hydrazone Oligodeoxynucleotides. Current Protocols, 2021, 1, e295.	2.9	0
17	Synthesis and Purification of N 3 â€Methylcytidine (m 3 C) Modified RNA Oligonucleotides. Current Protocols, 2021, 1, e307.	2.9	2
18	Structural Insights Into the 5′UG/3′GU Wobble Tandem in Complex With Ba2+ Cation. Frontiers in Molecular Biosciences, 2021, 8, 762786.	3.5	3

JIA SHENG

#	Article	IF	CITATIONS
19	Synthesis of 6â€Azaâ€2â€Hydroxyiminoâ€5â€Methylpyrimidine Nucleosides for Antiviral Evaluation. Current Protocols, 2021, 1, e329.	2.9	1
20	Sequence-selective purification of biological RNAs using DNA nanoswitches. Cell Reports Methods, 2021, 1, 100126.	2.9	5
21	Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta Pharmaceutica Sinica B, 2020, 10, 1492-1510.	12.0	56
22	Base pairing, structural and functional insights into N4-methylcytidine (m4C) and N4,N4-dimethylcytidine (m42C) modified RNA. Nucleic Acids Research, 2020, 48, 10087-10100.	14.5	12
23	Hybrid DNA/RNA nanostructures with 2′-5′ linkages. Nanoscale, 2020, 12, 21583-21590.	5.6	8
24	Short DNA Oligonucleotide as a Ag ⁺ Binding Detector. ACS Omega, 2020, 5, 28565-28570.	3.5	8
25	Detection and Quantification of RNA Phosphorothioate Modifications Using Mass Spectrometry. Current Protocols in Nucleic Acid Chemistry, 2020, 82, e113.	0.5	0
26	Synthesis of 5â€Cyanomethyluridine (cnm 5 U) and 5â€Cyanouridine (cn 5 U) Phosphoramidites and Their Incorporation into RNA Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2020, 82, e114.	0.5	0
27	2-Hydroxyimino-6-aza-pyrimidine nucleosides: synthesis, DFT calculations, and antiviral evaluations. New Journal of Chemistry, 2020, 44, 19650-19662.	2.8	3
28	RNA modifications and cancer. RNA Biology, 2020, 17, 1560-1575.	3.1	93
29	RNA Phosphorothioate Modification in Prokaryotes and Eukaryotes. ACS Chemical Biology, 2020, 15, 1301-1305.	3.4	30
30	Terpene Chain Length Affects the Base Pairing Discrimination of S-geranyl-2-thiouridine in RNA Duplex. IScience, 2020, 23, 101866.	4.1	3
31	Click and photo-release dual-functional nucleic acid nanostructures. Chemical Communications, 2019, 55, 9709-9712.	4.1	9
32	Integration of a photocleavable element into DNA nanoswitches. Chemical Communications, 2019, 55, 6587-6590.	4.1	14
33	General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase. Biochemistry, 2019, 58, 1319-1331.	2.5	19
34	Construction and structure studies of DNA-bipyridine complexes as versatile scaffolds for site-specific incorporation of metal ions into DNA. Journal of Biomolecular Structure and Dynamics, 2019, 37, 551-561.	3.5	6
35	RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50, 443-451.	21.4	122
36	Voltammetric Detection of Thrombin by Labeling with Osmium Tetroxide Bipyridine and Binding with Aptamers on a Gold Electrode. Electroanalysis, 2018, 30, 398-401.	2.9	5

Jia Sheng

#	Article	IF	CITATIONS
37	Cyano Modification on Uridine Decreases Baseâ€Pairing Stability and Specificity through Neighboring Disruption in RNA Duplex. ChemBioChem, 2018, 19, 2558-2565.	2.6	2
38	High-resolution DNA quadruplex structure containing all the A-, G-, C-, T-tetrads. Nucleic Acids Research, 2018, 46, 11627-11638.	14.5	24
39	Application of organocatalysis in bioorganometallic chemistry: asymmetric synthesis of multifunctionalized spirocyclic pyrazolone–ferrocene hybrids as novel RalA inhibitors. Organic Chemistry Frontiers, 2018, 5, 2229-2233.	4.5	45
40	Flexibility and stabilization of Hg ^{II} -mediated C:T and T:T base pairs in DNA duplex. Nucleic Acids Research, 2017, 45, gkw1296.	14.5	33
41	Unlocked Nucleic Acids for miRNA detection using two dimensional nano-graphene oxide. Biosensors and Bioelectronics, 2017, 89, 551-557.	10.1	30
42	Understanding Effect of Geranylation of tRNA Lys on Ribosome Binding: AÂComputational Study. Biophysical Journal, 2017, 112, 488a.	0.5	1
43	Synthesis of Geranylâ€2â€Thiouridineâ€Modified RNA. Current Protocols in Nucleic Acid Chemistry, 2017, 68, 4.72.1-4.72.13.	0.5	5
44	Click-based functionalization of a 2′-O-propargyl-modified branched DNA nanostructure. Journal of Materials Chemistry B, 2017, 5, 2074-2077.	5.8	12
45	Nature's Selection of Geranyl Group as a tRNA Modification: The Effects of Chain Length on Base-Pairing Specificity. ACS Chemical Biology, 2017, 12, 1504-1513.	3.4	7
46	A DNA Structure Containing Ag ^I â€Mediated G:G and C:C Base Pairs. Angewandte Chemie - International Edition, 2017, 56, 9430-9434.	13.8	60
47	A DNA Structure Containing Ag ^I â€Mediated G:G and C:C Base Pairs. Angewandte Chemie, 2017, 129, 9558-9562.	2.0	21
48	Crystal structure of an RNA-cleaving DNAzyme. Nature Communications, 2017, 8, 2006.	12.8	155
49	TET1â€Mediated Oxidation of 5â€Formylcytosine (5fC) to 5â€Carboxycytosine (5caC) in RNA. ChemBioChem, 2017, 18, 72-76.	2.6	36
50	Structural insights into RNA duplexes with multiple 2′-5′-linkages. Nucleic Acids Research, 2016, 45, gkw1307.	14.5	10
51	Base pairing and structural insights into the 5-formylcytosine in RNA duplex. Nucleic Acids Research, 2016, 44, 4968-4977.	14.5	25
52	Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Research, 2016, 44, 6036-6045.	14.5	26
53	Multiplexed Activity of perAuxidase: DNA-Capped AuNPs Act as Adjustable Peroxidase. Analytical Chemistry, 2016, 88, 600-605.	6.5	154
54	Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. Nucleic Acids Research, 2015, 43, 7675-7687.	14.5	50

JIA SHENG

#	Article	IF	CITATIONS
55	The importance of fitting in: conformational preference of selenium 2′ modifications in nucleosides and helical structures. Journal of Biomolecular Structure and Dynamics, 2015, 33, 289-297.	3.5	6
56	Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices. Langmuir, 2015, 31, 9943-9952.	3.5	29
57	Water-bridged hydrogen bond formation between 5-hydroxylmethylcytosine (5-hmC) and its 3′-neighbouring bases in A- and B-form DNA duplexes. Chemical Communications, 2015, 51, 16389-16392.	4.1	4
58	Synthesis and base pairing studies of geranylated 2-thiothymidine, a natural variant of thymidine. Chemical Communications, 2015, 51, 16369-16372.	4.1	19
59	Structural insights into the effects of 2′-5′ linkages on the RNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3050-3055.	7.1	48
60	Crystal Structure Studies of RNA Duplexes Containing s ² U:A and s ² U:U Base Pairs. Journal of the American Chemical Society, 2014, 136, 13916-13924.	13.7	44
61	Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery. Medicinal Research Reviews, 2013, 33, 1119-1173.	10.5	81
62	Structural insights of non-canonical U•U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Research, 2013, 41, 10476-10487.	14.5	26
63	Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone. Nucleic Acids Research, 2012, 40, 8111-8118.	14.5	19
64	Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Research, 2012, 40, 5171-5179.	14.5	51
65	Synthesis of 2′â€Deoxyâ€5â€(methylselenyl)cytidine and Seâ€DNAs for Structural and Functional Studies. Chemistry - an Asian Journal, 2012, 7, 476-479.	3.3	8
66	Nucleic acid X-ray crystallography via direct selenium derivatization. Chemical Society Reviews, 2011, 40, 4591.	38.1	66
67	The first chemical synthesis of boronic acid-modified DNA through a copper-free click reaction. Chemical Communications, 2011, 47, 3598.	4.1	25
68	Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery. Science China Chemistry, 2011, 54, 3-23.	8.2	11
69	Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization. Nucleic Acids Research, 2011, 39, 3962-3971.	14.5	21
70	Facile synthesis of nucleoside 5′-(α-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. Rna, 2011, 17, 1932-1938.	3.5	24
71	Synthesis of the Telluriumâ€Derivatized Phosphoramidites and Their Incorporation into DNA Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2011, 47, Unit 1.25.1-16.	0.5	2
72	Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Science China Chemistry, 2010, 53, 78-85.	8.2	25

JIA SHENG

#	Article	IF	CITATIONS
73	Selenium Derivatization of Nucleic Acids for Xâ€Ray Crystalâ€&tructure and Function Studies. Chemistry and Biodiversity, 2010, 7, 753-785.	2.1	55
74	High Fidelity of Base Pairing by 2-Selenothymidine in DNA. Journal of the American Chemical Society, 2010, 132, 2120-2121.	13.7	78
75	Synthesis and Crystal Structure of 2′-Se-Modified Guanosine Containing DNA. Journal of Organic Chemistry, 2010, 75, 637-641.	3.2	30
76	Synthesis of the First Telluriumâ€Derivatized Oligonucleotides for Structural and Functional Studies. Chemistry - A European Journal, 2009, 15, 10210-10216.	3.3	21
77	Facile Synthesis and Anti-Tumor Cell Activity of Se-Containing Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 56-66.	1.1	20
78	Synthesis and Crystallographic Analysis of 5-Se-Thymidine DNAs. Organic Letters, 2009, 11, 2503-2506.	4.6	30
79	New Telluride-Mediated Elimination for Novel Synthesis of 2′,3′-Didehydro-2′,3′-dideoxynucleosides. Journal of Organic Chemistry, 2008, 73, 3725-3729.	3.2	16
80	Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Research, 2008, 36, 7009-7018.	14.5	61
81	Synthesis of a 4â€Selenothymidine Phosphoramidite and Incorporation into Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2008, 32, Unit 1.19.	0.5	2
82	Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography. International Journal of Molecular Sciences, 2008, 9, 258-271.	4.1	34
83	Oxygen Replacement with Selenium at the Thymidine 4-Position for the Se Base Pairing and Crystal Structure Studies. Journal of the American Chemical Society, 2007, 129, 4862-4863.	13.7	81
84	Synthesis of a 2â€~-Se-thymidine Phosphoramidite and Its Incorporation into Oligonucleotides for Crystal Structure Study. Organic Letters, 2007, 9, 749-752.	4.6	56
85	Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Research, 2006, 35, 477-485.	14.5	61
86	Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot Mannich reaction: three component synthesis of β-amino carbonyl compounds. Catalysis Communications, 2005, 6, 201-204.	3.3	83
87	A Convenient Synthesis of α,α′-Bis(substituted benzylidene)cycloalkanones Catalyzed by Yb(OTf)3Under Solvent-Free Conditions. Synthesis, 2004, 2004, 3060-3064.	2.3	80
88	An Efficient Procedure for the Synthesis of Benzimidazole Derivatives Using Yb(OTf)3as Catalyst Under Solventâ€Free Conditions. Synthetic Communications, 2004, 34, 4265-4272.	2.1	51