
Sang-Moo Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/573537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the effects of different potent adjuvants on enhancing the immunogenicity and cross-protection by influenza virus vaccination in young and aged mice. Antiviral Research, 2022, 197, 105229.	4.1	4
2	Enhanced cross protection by hetero prime-boost vaccination with recombinant influenza viruses containing chimeric hemagglutinin-M2e epitopes. Virology, 2022, 566, 143-152.	2.4	2
3	Physical radiofrequency adjuvant enhances immune responses to influenza H5N1 vaccination. FASEB Journal, 2022, 36, e22182.	0.5	4
4	Dendritic cell activation by a micro particulate based system containing the influenza matrix-2 protein virus-like particle (M2e VLP). International Journal of Pharmaceutics, 2022, , 121667.	5.2	4
5	Transdermal Immunization with Microparticulate RSV-F Virus-like Particles Elicits Robust Immunity. Vaccines, 2022, 10, 584.	4.4	2
6	Low-Dose Cadmium Potentiates Metabolic Reprogramming Following Early-Life Respiratory Syncytial Virus Infection. Toxicological Sciences, 2022, 188, 62-74.	3.1	8
7	Thermostable H1 hemagglutinin stem with M2e epitopes provides broad cross-protection against group1 and 2 influenza A viruses. Molecular Therapy - Methods and Clinical Development, 2022, 26, 38-51.	4.1	1
8	Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines, 2022, 10, 944.	4.4	5
9	Nanoparticle formulation of the fusion protein virus like particles of respiratory syncytial virus stimulates enhanced in vitro antigen presentation and autophagy. International Journal of Pharmaceutics, 2022, 623, 121919.	5.2	9
10	A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine. Npj Vaccines, 2022, 7, .	6.0	7
11	Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses. Virology, 2022, 574, 37-46.	2.4	0
12	A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats. Biomedicines, 2021, 9, 133.	3.2	8
13	Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Scientific Reports, 2021, 11, 4151.	3.3	16
14	Immunogenicity and Neutralizing Activity Comparison of SARS-CoV-2 Spike Full-Length and Subunit Domain Proteins in Young Adult and Old-Aged Mice. Vaccines, 2021, 9, 316.	4.4	11
15	Roles of the Fc Receptor Î ³ -Chain in Inducing Protective Immune Responses after Heterologous Vaccination against Respiratory Syncytial Virus Infection. Vaccines, 2021, 9, 232.	4.4	0
16	Natural killer cells contribute to enhanced respiratory disease after oil-in-water emulsion adjuvanted vaccination against respiratory syncytial virus and infection. Human Vaccines and Immunotherapeutics, 2021, 17, 3806-3817.	3.3	0
17	BCG Cell Wall Skeleton As a Vaccine Adjuvant Protects Both Infant and Old-Aged Mice from Influenza Virus Infection. Biomedicines, 2021, 9, 516.	3.2	5
18	Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells, 2021, 10, 1412.	4.1	6

#	Article	IF	CITATIONS
19	An Update on mRNA-Based Viral Vaccines. Vaccines, 2021, 9, 965.	4.4	14
20	Functional NK Cell Activation by Ovalbumin Immunization with a Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Dendritic Cell Maturation. Vaccines, 2021, 9, 1061.	4.4	5
21	Transdermal Vaccination with the Matrix-2 Protein Virus-like Particle (M2e VLP) Induces Immunity in Mice against Influenza A Virus. Vaccines, 2021, 9, 1324.	4.4	9
22	Progress in the development of virus-like particle vaccines against respiratory viruses. Expert Review of Vaccines, 2020, 19, 11-24.	4.4	13
23	Doubleâ€Layered M2eâ€NA Protein Nanoparticle Immunization Induces Broad Crossâ€Protection against Different Influenza Viruses in Mice. Advanced Healthcare Materials, 2020, 9, e1901176.	7.6	32
24	Cross protection by inactivated recombinant influenza viruses containing chimeric hemagglutinin conjugates with a conserved neuraminidase or M2 ectodomain epitope. Virology, 2020, 550, 51-60.	2.4	11
25	Adjuvant effects of killed Lactobacillus casei DK128 on enhancing T helper type 1 immune responses and the efficacy of influenza vaccination in normal and CD4-deficient mice. Vaccine, 2020, 38, 5783-5792.	3.8	3
26	Recombinant Live Attenuated Influenza Virus Expressing Conserved G-Protein Domain in a Chimeric Hemagglutinin Molecule Induces G-Specific Antibodies and Confers Protection against Respiratory Syncytial Virus. Vaccines, 2020, 8, 716.	4.4	6
27	Generation and Characterization of Universal Live-Attenuated Influenza Vaccine Candidates Containing Multiple M2e Epitopes. Vaccines, 2020, 8, 648.	4.4	9
28	Lactic Acid Bacteria Isolated From Korean Kimchi Activate the Vitamin D Receptor–autophagy Signaling Pathways. Inflammatory Bowel Diseases, 2020, 26, 1199-1211.	1.9	33
29	Commensal epitopes drive differentiation of colonic T _{regs} . Science Advances, 2020, 6, eaaz3186.	10.3	44
30	Natural Killer and CD8 T Cells Contribute to Protection by Formalin Inactivated Respiratory Syncytial Virus Vaccination under a CD4-Deficient Condition. Immune Network, 2020, 20, e51.	3.6	7
31	Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus. Virology, 2019, 535, 179-188.	2.4	43
32	Influenza M2 virus-like particle vaccination enhances protection in combination with avian influenza HA VLPs. PLoS ONE, 2019, 14, e0216871.	2.5	27
33	Antigenicity and immunogenicity of unique prefusion-mimic F proteins presented on enveloped virus-like particles. Vaccine, 2019, 37, 6656-6664.	3.8	4
34	The efficacy of inactivated split respiratory syncytial virus as a vaccine candidate and the effects of novel combination adjuvants. Antiviral Research, 2019, 168, 100-108.	4.1	2
35	A unique combination adjuvant modulates immune responses preventing vaccine-enhanced pulmonary histopathology after a single dose vaccination with fusion protein and challenge with respiratory syncytial virus. Virology, 2019, 534, 1-13.	2.4	9
36	Environmental Cadmium Enhances Lung Injury by Respiratory Syncytial Virus Infection. American Journal of Pathology, 2019, 189, 1513-1525.	3.8	23

#	Article	IF	CITATIONS
37	Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Research, 2019, 168, 9-17.	4.1	20
38	Flagellin-expressing virus-like particles exhibit adjuvant effects on promoting IgG isotype-switched long-lasting antibody induction and protection of influenza vaccines in CD4-deficient mice. Vaccine, 2019, 37, 3426-3434.	3.8	8
39	Co-Delivery of M2e Virus-Like Particles with Influenza Split Vaccine to the Skin Using Microneedles Enhances the Efficacy of Cross Protection. Pharmaceutics, 2019, 11, 188.	4.5	14
40	Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. Environment International, 2019, 127, 720-729.	10.0	19
41	Enhancing the cross protective efficacy of live attenuated influenza virus vaccine by supplemented vaccination with M2 ectodomain virus-like particles. Virology, 2019, 529, 111-121.	2.4	15
42	Low-dose cadmium disrupts mitochondrial citric acid cycle and lipid metabolism in mouse lung. Free Radical Biology and Medicine, 2019, 131, 209-217.	2.9	47
43	Respiratory Syncytial Virus Fusion Protein-encoding DNA Vaccine Is Less Effective in Conferring Protection against Inflammatory Disease than a Virus-like Particle Platform. Immune Network, 2019, 19, e18.	3.6	4
44	Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nature Communications, 2018, 9, 359.	12.8	147
45	Virus-Like Particles Are a Superior Platform for Presenting M2e Epitopes to Prime Humoral and Cellular Immunity against Influenza Virus. Vaccines, 2018, 6, 66.	4.4	20
46	Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS ONE, 2018, 13, e0205071.	2.5	18
47	Universal influenza vaccines: from viruses to nanoparticles. Expert Review of Vaccines, 2018, 17, 967-976.	4.4	38
48	Antiviral Activity of Fermented Ginseng Extracts against a Broad Range of Influenza Viruses. Viruses, 2018, 10, 471.	3.3	35
49	Virus-like particles presenting flagellin exhibit unique adjuvant effects on eliciting T helper type 1 humoral and cellular immune responses to poor immunogenic influenza virus M2e protein vaccine. Virology, 2018, 524, 172-181.	2.4	12
50	Complement C3 Plays a Key Role in Inducing Humoral and Cellular Immune Responses to Influenza Virus Strain-Specific Hemagglutinin-Based or Cross-Protective M2 Extracellular Domain-Based Vaccination. Journal of Virology, 2018, 92, .	3.4	19
51	Immunology and efficacy of MF59-adjuvanted vaccines. Human Vaccines and Immunotherapeutics, 2018, 14, 3041-3045.	3.3	103
52	MPL and CpG combination adjuvants promote homologous and heterosubtypic cross protection of inactivated split influenza virus vaccine. Antiviral Research, 2018, 156, 107-115.	4.1	31
53	Intranasal vaccination with M2e5x virus-like particles induces humoral and cellular immune responses conferring cross-protection against heterosubtypic influenza viruses. PLoS ONE, 2018, 13, e0190868.	2.5	57
54	Virus-like particle vaccines containing F or F and G proteins confer protection against respiratory syncytial virus without pulmonary inflammation in cotton rats. Human Vaccines and Immunotherapeutics, 2017, 13, 1031-1039.	3.3	17

#	Article	IF	CITATIONS
55	Immunogenicity and efficacy of replication-competent recombinant influenza virus carrying multimeric M2 extracellular domains in a chimeric hemagglutinin conjugate. Antiviral Research, 2017, 148, 43-52.	4.1	8
56	Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus. Virology, 2017, 511, 142-151.	2.4	11
57	Roles of antibodies to influenza A virus hemagglutinin, neuraminidase, and M2e in conferring cross protection. Biochemical and Biophysical Research Communications, 2017, 493, 393-398.	2.1	15
58	Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Scientific Reports, 2017, 7, 17360.	3.3	85
59	Roles of Aluminum Hydroxide and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency To Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine. Journal of Immunology, 2017, 198, 279-291.	0.8	37
60	Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination. Immune Network, 2017, 17, 326.	3.6	29
61	Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins. Vaccines, 2017, 5, 52.	4.4	5
62	Cross-Protective Efficacy of Influenza Virus M2e Containing Virus-Like Particles Is Superior to Hemagglutinin Vaccines and Variable Depending on the Genetic Backgrounds of Mice. Frontiers in Immunology, 2017, 8, 1730.	4.8	27
63	Cellular Immune Correlates Preventing Disease Against Respiratory Syncytial Virus by Vaccination with Virus-Like Nanoparticles Carrying Fusion Proteins. Journal of Biomedical Nanotechnology, 2017, 13, 84-98.	1.1	19
64	Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles. Human Vaccines and Immunotherapeutics, 2017, 13, 2594-2605.	3.3	20
65	Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R906-R916.	1.8	101
66	Effects of MF59 Adjuvant on Induction of Isotype-Switched IgG Antibodies and Protection after Immunization with T-Dependent Influenza Virus Vaccine in the Absence of CD4 ⁺ T Cells. Journal of Virology, 2016, 90, 6976-6988.	3.4	39
67	CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus. Journal of Virology, 2016, 90, 6746-6758.	3.4	23
68	Progress in developing virus-like particle influenza vaccines. Expert Review of Vaccines, 2016, 15, 1281-1293.	4.4	49
69	Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets. Vaccine, 2016, 34, 466-473.	3.8	16
70	Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease. Virology, 2016, 494, 215-224.	2.4	27
71	Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 759-770.	3.3	7
72	A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus. Journal of Immunology, 2016, 196, 2637-2645.	0.8	49

#	Article	IF	CITATIONS
73	Do recombinant-engineered nanoparticle vaccines hold promise for the prevention of respiratory syncytial virus?. Nanomedicine, 2016, 11, 439-442.	3.3	0
74	Supplemented vaccination with tandem repeat M2e virus-like particles enhances protection against homologous and heterologous HPAI H5 viruses in chickens. Vaccine, 2016, 34, 678-686.	3.8	12
75	Influenza virusâ€like particles engineered by protein transfer with tumorâ€associated antigens induces protective antitumor immunity. Biotechnology and Bioengineering, 2015, 112, 1102-1110.	3.3	40
76	Ginseng Protects Against Respiratory Syncytial Virus by Modulating Multiple Immune Cells and Inhibiting Viral Replication. Nutrients, 2015, 7, 1021-1036.	4.1	36
77	Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines. Immune Network, 2015, 15, 213.	3.6	48
78	Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages. International Journal of Nanomedicine, 2015, 10, 4491.	6.7	20
79	Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles. PLoS ONE, 2015, 10, e0134431.	2.5	28
80	Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells. PLoS ONE, 2015, 10, e0139916.	2.5	33
81	Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. Journal of Controlled Release, 2015, 210, 208-216.	9.9	49
82	Recombinant influenza virus carrying the conserved domain of respiratory syncytial virus (RSV) G protein confers protection against RSV without inflammatory disease. Virology, 2015, 476, 217-225.	2.4	16
83	Systems biology from virus to humans. Journal of Analytical Science and Technology, 2015, 6, 3.	2.1	5
84	Protein transfer-mediated surface engineering to adjuvantate virus-like nanoparticles for enhanced anti-viral immune responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1097-1107.	3.3	20
85	Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection. Virology, 2015, 485, 36-46.	2.4	18
86	Co-immunization with tandem repeat heterologous M2 extracellular proteins overcomes strain-specific protection of split vaccine against influenza A virus. Antiviral Research, 2015, 122, 82-90.	4.1	8
87	Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. Journal of Virology, 2015, 89, 11692-11705.	3.4	44
88	Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Research, 2015, 115, 1-8.	4.1	16
89	Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 99-108.	3.3	29
90	Cross Protection against Influenza A Virus by Yeast-Expressed Heterologous Tandem Repeat M2 Extracellular Proteins. PLoS ONE, 2015, 10, e0137822.	2.5	15

#	Article	IF	CITATIONS
91	New vaccines against influenza virus. Clinical and Experimental Vaccine Research, 2014, 3, 12.	2.2	82
92	Ginseng Diminishes Lung Disease in Mice Immunized with Formalin-Inactivated Respiratory Syncytial Virus After Challenge by Modulating Host Immune Responses. Journal of Interferon and Cytokine Research, 2014, 34, 902-914.	1.2	18
93	Distinct B ell populations contribute to vaccine antigenâ€specific antibody production in a transgenic mouse model. Immunology, 2014, 142, 624-635.	4.4	4
94	Maternal antibodies by passive immunization with formalin inactivated respiratory syncytial virus confer protection without vaccine-enhanced disease. Antiviral Research, 2014, 104, 1-6.	4.1	22
95	Fc receptor is not required for inducing antibodies but plays a critical role in conferring protection after influenza <scp>M</scp> 2 vaccination. Immunology, 2014, 143, 300-309.	4.4	45
96	Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis. Antiviral Research, 2014, 110, 115-123.	4.1	41
97	Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus. Vaccine, 2014, 32, 5866-5874.	3.8	14
98	Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antiviral Research, 2014, 111, 129-135.	4.1	30
99	Supplementation of Influenza Split Vaccines with Conserved M2 Ectodomains Overcomes Strain Specificity and Provides Long-term Cross Protection. Molecular Therapy, 2014, 22, 1364-1374.	8.2	46
100	Roles of Major Histocompatibility Complex Class II in Inducing Protective Immune Responses to Influenza Vaccination. Journal of Virology, 2014, 88, 7764-7775.	3.4	23
101	AS04-adjuvanted virus-like particles containing multiple M2 extracellular domains of influenza virus confer improved protection. Vaccine, 2014, 32, 4578-4585.	3.8	30
102	Virus-Like Particle Vaccine Confers Protection against a Lethal Newcastle Disease Virus Challenge in Chickens and Allows a Strategy of Differentiating Infected from Vaccinated Animals. Vaccine Journal, 2014, 21, 360-365.	3.1	31
103	Influenza M2 virus-like particles confer a broader range of cross protection to the strain-specific pre-existing immunity. Vaccine, 2014, 32, 5824-5831.	3.8	32
104	Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection. Nutrients, 2014, 6, 517-529.	4.1	54
105	Protective efficacy of crude virus-like particle vaccine against HPAI H5N1 in chickens and its application on DIVA strategy. Influenza and Other Respiratory Viruses, 2013, 7, 340-348.	3.4	20
106	Multiple heterologous M2 extracellular domains presented on virus-like particles confer broader and stronger M2 immunity than live influenza A virus infection. Antiviral Research, 2013, 99, 328-335.	4.1	61
107	Host Responses in Human Skin After Conventional Intradermal Injection or Microneedle Administration of Virusâ€Likeâ€Particle Influenza Vaccine. Advanced Healthcare Materials, 2013, 2, 1401-1410.	7.6	31
108	Virus-like particle vaccine protects against H3N2 canine influenza virus in dog. Vaccine, 2013, 31, 3268-3273.	3.8	20

#	Article	IF	CITATIONS
109	Virus-like Particles Containing Multiple M2 Extracellular Domains Confer Improved Cross-protection Against Various Subtypes of Influenza Virus. Molecular Therapy, 2013, 21, 485-492.	8.2	138
110	Mucosal Adjuvants for Influenza Virus-Like Particle Vaccine. Viral Immunology, 2013, 26, 385-395.	1.3	23
111	Long-Term Protective Immunity from an Influenza Virus-Like Particle Vaccine Administered with a Microneedle Patch. Vaccine Journal, 2013, 20, 1433-1439.	3.1	59
112	Protective CD8 T Cell–Mediated Immunity against Influenza A Virus Infection following Influenza Virus–like Particle Vaccination. Journal of Immunology, 2013, 191, 2486-2494.	0.8	65
113	Lactobacillus plantarum DK119 as a Probiotic Confers Protection against Influenza Virus by Modulating Innate Immunity. PLoS ONE, 2013, 8, e75368.	2.5	138
114	Oral vaccination with inactivated influenza vaccine induces cross-protective immunity. Vaccine, 2012, 30, 180-188.	3.8	22
115	Virus-like particles as universal influenza vaccines. Expert Review of Vaccines, 2012, 11, 995-1007.	4.4	73
116	Enhanced Influenza Virus-Like Particle Vaccines Containing the Extracellular Domain of Matrix Protein 2 and a Toll-Like Receptor Ligand. Vaccine Journal, 2012, 19, 1119-1125.	3.1	45
117	Microneedle and mucosal delivery of influenza vaccines. Expert Review of Vaccines, 2012, 11, 547-560.	4.4	33
118	Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology, 2012, 430, 127-135.	2.4	61
119	Protective Effect of Ginseng Polysaccharides on Influenza Viral Infection. PLoS ONE, 2012, 7, e33678.	2.5	73
120	Proteomic Characterization of Influenza H5N1 Virus-like Particles and Their Protective Immunogenicity. Journal of Proteome Research, 2011, 10, 3450-3459.	3.7	22
121	H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine, 2011, 29, 4003-4007.	3.8	59
122	Immunogenicity of low-pH treated whole viral influenza vaccine. Virology, 2011, 417, 196-202.	2.4	28
123	Stability Kinetics of Influenza Vaccine Coated onto Microneedles During Drying and Storage. Pharmaceutical Research, 2011, 28, 135-144.	3.5	91
124	MyD88 Plays an Essential Role in Inducing B Cells Capable of Differentiating into Antibody-Secreting Cells after Vaccination. Journal of Virology, 2011, 85, 11391-11400.	3.4	42
125	Viruslike Particle Vaccine Induces Protection Against Respiratory Syncytial Virus Infection in Mice. Journal of Infectious Diseases, 2011, 204, 987-995.	4.0	117
126	Virus-Like Particle Vaccine Containing Hemagglutinin Confers Protection against 2009 H1N1 Pandemic Influenza. Vaccine Journal, 2011, 18, 2010-2017.	3.1	29

#	Article	IF	CITATIONS
127	Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 757-761.	7.1	206
128	Influenza Virus-Like Particles Containing M2 Induce Broadly Cross Protective Immunity. PLoS ONE, 2011, 6, e14538.	2.5	104
129	Formulation of Microneedles Coated with Influenza Virus-like Particle Vaccine. AAPS PharmSciTech, 2010, 11, 1193-1201.	3.3	91
130	Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. Journal of Controlled Release, 2010, 142, 187-195.	9.9	217
131	Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. Journal of Controlled Release, 2010, 147, 326-332.	9.9	99
132	Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Research, 2010, 88, 244-247.	4.1	65
133	Protective immunity against H5N1 influenza virus by a single dose vaccination with virus-like particles. Virology, 2010, 405, 165-175.	2.4	84
134	Virus-Like Particle Vaccine Protects against 2009 H1N1 Pandemic Influenza Virus in Mice. PLoS ONE, 2010, 5, e9161.	2.5	91
135	Changes in Human Langerhans Cells Following Intradermal Injection of Influenza Virus-Like Particle Vaccines. PLoS ONE, 2010, 5, e12410.	2.5	30
136	Enhanced Memory Responses to Seasonal H1N1 Influenza Vaccination of the Skin with the Use of Vaccineâ€Coated Microneedles. Journal of Infectious Diseases, 2010, 201, 190-198.	4.0	107
137	Microneedle Delivery of H5N1 Influenza Virus-Like Particles to the Skin Induces Long-Lasting B- and T-Cell Responses in Mice. Vaccine Journal, 2010, 17, 1381-1389.	3.1	68
138	Intradermal Vaccination with Influenza Virus-Like Particles by Using Microneedles Induces Protection Superior to That with Intramuscular Immunization. Journal of Virology, 2010, 84, 7760-7769.	3.4	118
139	Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine, 2010, 28, 6104-6113.	3.8	63
140	Intranasal Immunization with Influenza VLPs Incorporating Membrane-Anchored Flagellin Induces Strong Heterosubtypic Protection. PLoS ONE, 2010, 5, e13972.	2.5	82
141	Induction of Long-Term Protective Immune Responses by Influenza H5N1 Virus-Like Particles. PLoS ONE, 2009, 4, e4667.	2.5	93
142	Kinetics of Immune Responses to Influenza Virus-Like Particles and Dose-Dependence of Protection with a Single Vaccination. Journal of Virology, 2009, 83, 4489-4497.	3.4	59
143	Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events. Molecules and Cells, 2009, 27, 5-14.	2.6	47
144	Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine, 2009, 27, 6932-6938.	3.8	110

#	Article	IF	CITATIONS
145	Influenza vaccines based on virus-like particles. Virus Research, 2009, 143, 140-146.	2.2	123
146	Stabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin. PLoS ONE, 2009, 4, e7152.	2.5	92
147	Induction of Heterosubtypic Immunity to Influenza Virus by Intranasal Immunization. Journal of Virology, 2008, 82, 1350-1359.	3.4	147
148	A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine, 2008, 26, 3352-3361.	3.8	77
149	Incorporation of Membrane-Anchored Flagellin into Influenza Virus-Like Particles Enhances the Breadth of Immune Responses. Journal of Virology, 2008, 82, 11813-11823.	3.4	118
150	Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles. Journal of Virology, 2007, 81, 10869-10878.	3.4	80
151	Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine, 2007, 25, 3841-3850.	3.8	25
152	Virus-Like Particle Vaccine Induces Protective Immunity against Homologous and Heterologous Strains of Influenza Virus. Journal of Virology, 2007, 81, 3514-3524.	3.4	279
153	Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology, 2007, 362, 331-341.	2.4	68
154	Incorporation of Glycosylphosphatidylinositol-Anchored Granulocyte- MacrophageColony-Stimulating Factor or CD40 Ligand Enhances Immunogenicity of Chimeric Simian Immunodeficiency Virus-Like Particles. Journal of Virology, 2007, 81, 1083-1094.	3.4	73
155	Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine, 2006, 24, 6110-6119.	3.8	87
156	Impaired T- and B-cell development in Tcl1-deficient mice. Blood, 2005, 105, 1288-1294.	1.4	33
157	Modified HIV envelope proteins with enhanced binding to neutralizing monoclonal antibodies. Virology, 2005, 331, 20-32.	2.4	54
158	Mucosal immunization of CD4+ T cell-deficient mice with an inactivated virus induces IgG and IgA responses in serum and mucosal secretions. Virology, 2005, 331, 387-395.	2.4	9
159	Intranasal Immunization with Inactivated Influenza Virus Enhances Immune Responses to Coadministered Simian-Human Immunodeficiency Virus-Like Particle Antigens. Journal of Virology, 2004, 78, 9624-9632.	3.4	40
160	Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology, 2003, 313, 502-513.	2.4	49
161	Mucosal Immunization with Virus-Like Particles of Simian Immunodeficiency Virus Conjugated with Cholera Toxin Subunit B. Journal of Virology, 2003, 77, 9823-9830.	3.4	62
162	Enhancement of Mucosal Immunization with Virus-Like Particles of Simian Immunodeficiency Virus. Journal of Virology, 2003, 77, 3615-3623.	3.4	45