Jeff Errington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5735221/publications.pdf

Version: 2024-02-01

6613 7745 25,548 211 79 150 citations h-index g-index papers 223 223 223 12768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.	27.8	3,519
2	Essential <i>Bacillus subtilis</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4678-4683.	7.1	1,261
3	Control of Cell Shape in Bacteria. Cell, 2001, 104, 913-922.	28.9	852
4	Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Reviews Microbiology, 2009, 7, 642-653.	28.6	702
5	Control of Cell Morphogenesis in Bacteria. Cell, 2003, 113, 767-776.	28.9	679
6	Cytokinesis in Bacteria. Microbiology and Molecular Biology Reviews, 2003, 67, 52-65.	6.6	548
7	Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology, 2003, 1, 117-126.	28.6	545
8	An Inhibitor of FtsZ with Potent and Selective Anti-Staphylococcal Activity. Science, 2008, 321, 1673-1675.	12.6	389
9	Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis. Cell, 2004, 117, 915-925.	28.9	361
10	Regulation of peptidoglycan synthesis and remodelling. Nature Reviews Microbiology, 2020, 18, 446-460.	28.6	342
11	Polar localization of the MinD protein of <i>Bacillus subtilis</i> and its role in selection of the mid-cell division site. Genes and Development, 1998, 12, 3419-3430.	5.9	332
12	<i>Bacillus subtilis</i> spollIE Protein Required for DNA Segregation During Asymmetric Cell Division. Science, 1994, 264, 572-575.	12.6	316
13	Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning Genes and Development, 1997, 11, 1160-1168.	5.9	304
14	Localisation of DivIVA by targeting to negatively curved membranes. EMBO Journal, 2009, 28, 2272-2282.	7.8	292
15	Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis. Cell, 2009, 137, 685-696.	28.9	290
16	The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Molecular Microbiology, 1997, 24, 905-915.	2.5	274
17	\ddot{l}_f F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti- \ddot{l}_f factor that is also a protein kinase. Cell, 1993, 74, 735-742.	28.9	265
18	Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Molecular Microbiology, 2001, 39, 47-53.	2.5	264

#	Article	IF	Citations
19	Life without a wall or division machine in Bacillus subtilis. Nature, 2009, 457, 849-853.	27.8	259
20	Compartmentalization of transcription and translation in Bacillus subtilis. EMBO Journal, 2000, 19, 710-718.	7.8	240
21	A widespread family of bacterial cell wall assembly proteins. EMBO Journal, 2011, 30, 4931-4941.	7.8	224
22	Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Molecular Microbiology, 2003, 50, 871-881.	2.5	215
23	Control of the cell elongation–division cycle by shuttling of PBP1 protein in <i>Bacillus subtilis</i> Molecular Microbiology, 2008, 68, 1029-1046.	2.5	198
24	Role of interactions between SpolIAA and SpolIAB in regulating cell-specific transcription factor lf F of Bacillus subtilis. Genes and Development, 1994, 8, 2653-2663.	5.9	189
25	Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA. Cell, 2008, 135, 74-84.	28.9	189
26	Actin Homolog MreBH Governs Cell Morphogenesis by Localization of the Cell Wall Hydrolase LytE. Developmental Cell, 2006, 11, 399-409.	7.0	187
27	Dynamic Movement of the ParA-like Soj Protein of B. subtilis and Its Dual Role in Nucleoid Organization and Developmental Regulation. Molecular Cell, 1999, 4, 673-682.	9.7	186
28	Excess Membrane Synthesis Drives a Primitive Mode of Cell Proliferation. Cell, 2013, 152, 997-1007.	28.9	186
29	A magnesiumâ€dependent <i>mreB</i> null mutant: implications for the role of <i>mreB</i> in <i>Bacillus subtilis</i> . Molecular Microbiology, 2005, 55, 1646-1657.	2.5	185
30	RacA and the Sojâ€SpoOJ system combine to effect polar chromosome segregation in sporulating <i>Bacillus subtilis</i> . Molecular Microbiology, 2003, 49, 1463-1475.	2.5	184
31	Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Molecular Microbiology, 1999, 33, 84-96.	2.5	181
32	The Bacterial Cytoskeleton. Developmental Cell, 2003, 4, 19-28.	7.0	178
33	Bacterial Membranes: Structure, Domains, and Function. Annual Review of Microbiology, 2017, 71, 519-538.	7.3	178
34	An expanded view of bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8342-8347.	7.1	176
35	Role of <i>Bacillus subtilis</i> SpollIE in DNA Transport Across the Mother Cell-Prespore Division Septum. Science, 2000, 290, 995-997.	12.6	175
36	Nucleoid occlusion and bacterial cell division. Nature Reviews Microbiology, 2012, 10, 8-12.	28.6	173

#	Article	IF	Citations
37	Direct evidence for active segregation of <i>oriC</i> regions of the <i>Bacillus subtilis</i> chromosome and coâ€localization with the SpoOJ partitioning protein. Molecular Microbiology, 1997, 25, 945-954.	2.5	172
38	Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO Journal, 2009, 28, 830-842.	7.8	171
39	The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Molecular Microbiology, 1993, 8, 945-955.	2.5	165
40	L-form bacteria, cell walls and the origins of life. Open Biology, 2013, 3, 120143.	3.6	162
41	RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nature Microbiology, 2017, 2, 16253.	13.3	159
42	Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in <i>Bacillus subtilis</i> . Molecular Microbiology, 2005, 57, 1196-1209.	2.5	157
43	A novel component of the divisionâ€site selection system of <i>Bacillus subtilis</i> and a new mode of action for the division inhibitor MinCD. Molecular Microbiology, 2008, 70, 1556-1569.	2.5	157
44	The bacterial chromosome segregation protein SpoOJ spreads along DNA from parS nucleation sites. Molecular Microbiology, 2006, 61, 1352-1361.	2.5	153
45	Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment. Journal of Bacteriology, 1991, 173, 3159-3169.	2.2	152
46	SepF, a novel FtsZ-interacting protein required for a late step in cell division. Molecular Microbiology, 2006, 59, 989-999.	2.5	152
47	Two Essential DNA Polymerases at the Bacterial Replication Fork. Science, 2001, 294, 1716-1719.	12.6	148
48	Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Molecular Microbiology, 2004, 55, 799-807.	2.5	148
49	Septal localization of the SpollIE chromosome partitioning protein in Bacillus subtilis. EMBO Journal, 1997, 16, 2161-2169.	7.8	147
50	The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Molecular Microbiology, 1996, 21, 501-509.	2.5	143
51	Single-Molecule Force Spectroscopy and Imaging of the Vancomycin/d-Ala-d-Ala Interaction. Nano Letters, 2007, 7, 796-801.	9.1	139
52	Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO Journal, 2009, 28, 1940-1952.	7.8	139
53	Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Molecular Microbiology, 2003, 51, 749-764.	2.5	136
54	Bacterial morphogenesis and the enigmatic MreB helix. Nature Reviews Microbiology, 2015, 13, 241-248.	28.6	131

#	Article	IF	Citations
55	Cytological and biochemical characterization of the FtsA cell division protein of <i>Bacillus subtilis</i> . Molecular Microbiology, 2001, 40, 115-125.	2.5	128
56	Regulation of cell wall morphogenesis in <i>Bacillus subtilis</i> by recruitment of PBP1 to the MreB helix. Molecular Microbiology, 2009, 71, 1131-1144.	2.5	124
57	Use of asymmetric cell division andspolllEmutants to probe chromosome orientation and organization inBacillus subtilis. Molecular Microbiology, 1998, 27, 777-786.	2.5	120
58	Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. Journal of Bacteriology, 1992, 174, 586-594.	2.2	119
59	Division site selection protein DivIVA of <i>Bacillus subtilis</i> has a second distinct function in chromosome segregation during sporulation. Genes and Development, 2001, 15, 1662-1673.	5.9	117
60	DNA transport in bacteria. Nature Reviews Molecular Cell Biology, 2001, 2, 538-545.	37.0	116
61	A mechanism for cell cycle regulation of sporulation initiation in <i>Bacillus subtilis</i> Development, 2009, 23, 1959-1970.	5.9	114
62	Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Molecular Microbiology, 2000, 35, 299-311.	2.5	113
63	Characterization of the essential cell division genefts Lâ \in f (yllDâ \in Š) of Bacillus subtilisand its role in the assembly of the division apparatus. Molecular Microbiology, 1998, 29, 593-604.	2.5	112
64	Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology (United Kingdom), 2006, 152, 2895-2907.	1.8	111
65	A dynamic bacterial cytoskeleton. Trends in Cell Biology, 2003, 13, 577-583.	7.9	110
66	Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis Genes and Development, 1996, 10, 794-803.	5.9	108
67	Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO Journal, 2007, 26, 4239-4251.	7.8	105
68	Postseptational chromosome partitioning in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8630-8634.	7.1	100
69	Novel Inhibitors of Bacterial Cytokinesis Identified by a Cell-based Antibiotic Screening Assay. Journal of Biological Chemistry, 2005, 280, 39709-39715.	3.4	98
70	General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. ELife, 2014, 3, .	6.0	98
71	The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. Journal of Molecular Biology, 1994, 235, 209-220.	4.2	97
72	Differentiated roles for <scp>MreB</scp> â€actin isologues and autolytic enzymes in <i><scp>B</scp>acillus subtilis</i> morphogenesis. Molecular Microbiology, 2013, 89, 1084-1098.	2.5	97

#	Article	IF	CITATIONS
73	Cloning, DNA Sequence, Functional Analysis and Transcriptional Regulation of the Genes Encoding Dipicolinic Acid Synthetase Required for Sporulation in Bacillus subtilis. Journal of Molecular Biology, 1993, 232, 468-483.	4.2	96
74	SpoOJ regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Molecular Microbiology, 2011, 79, 1089-1100.	2.5	96
75	Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. Journal of Bacteriology, 1993, 175, 7604-7616.	2.2	94
76	Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3849-3853.	7.1	92
77	Nucleoid occlusion protein <scp>N</scp> oc recruits <scp>DNA</scp> to the bacterial cell membrane. EMBO Journal, 2015, 34, 491-501.	7.8	92
78	Structure and function of the spollIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for ÂG activity at an intermediate stage of sporulation. Journal of General Microbiology, 1992, 138, 2609-2618.	2.3	91
79	Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of <i>Bacillus subtilis</i> . Molecular Microbiology, 2009, 73, 719-731.	2.5	90
80	Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage. Current Biology, 2015, 25, 1613-1618.	3.9	89
81	L-form bacteria, chronic diseases and the origins of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150494.	4.0	88
82	Lysozyme Counteracts \hat{l}^2 -Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. Cell, 2018, 172, 1038-1049.e10.	28.9	88
83	Dimeric structure of the cell shape protein MreC and its functional implications. Molecular Microbiology, 2006, 62, 1631-1642.	2.5	86
84	Multiple effects of benzamide antibiotics on FtsZ function. Molecular Microbiology, 2011, 80, 68-84.	2.5	86
85	Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. Journal of Bacteriology, 1995, 177, 3923-3931.	2.2	84
86	Systematic localisation of proteins fused to the green fluorescent protein inBacillus subtilis: Identification of new proteins at the DNA replication factory. Proteomics, 2006, 6, 2135-2146.	2.2	84
87	A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co-ordination of chromosome segregation and cell division. Molecular Microbiology, 1998, 28, 981-990.	2.5	83
88	Genetic analysis of the chromosome segregation protein SpoOJ of <i>Bacillus subtilis</i> : evidence for separate domains involved in DNA binding and interactions with Soj protein. Molecular Microbiology, 2001, 41, 743-755.	2.5	83
89	Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO Journal, 2012, 31, 1542-1555.	7.8	82
90	The spollIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the ?Eform of RNA polymerase. Molecular Microbiology, 1991, 5, 1927-1940.	2.5	80

#	Article	IF	Citations
91	Interlinked Sister Chromosomes Arise in the Absence of Condensin during Fast Replication in B.Âsubtilis. Current Biology, 2014, 24, 293-298.	3.9	80
92	Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis. Journal of Bacteriology, 2008, 190, 1812-1821.	2.2	79
93	Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Molecular Microbiology, 2000, 36, 278-289.	2.5	76
94	Crucial Role for Membrane Fluidity in Proliferation of Primitive Cells. Cell Reports, 2012, 1, 417-423.	6.4	75
95	A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. Journal of Bacteriology, 1996, 178, 2343-2350.	2.2	74
96	Cellular localization of cholineâ€utilization proteins in <i>Streptococcus pneumoniae</i> using novel fluorescent reporter systems. Molecular Microbiology, 2009, 74, 395-408.	2.5	73
97	Large ring polymers align FtsZ polymers for normal septum formation. EMBO Journal, 2011, 30, 617-626.	7.8	73
98	Multiple Interactions between the Transmembrane Division Proteins of Bacillus subtilis and the Role of FtsL Instability in Divisome Assembly. Journal of Bacteriology, 2006, 188, 7396-7404.	2.2	71
99	Cell cycle regulation by the bacterial nucleoid. Current Opinion in Microbiology, 2014, 22, 94-101.	5.1	71
100	Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology (United Kingdom), 2020, 166, 425-427.	1.8	70
101	Cell Cycle Machinery in Bacillus subtilis. Sub-Cellular Biochemistry, 2017, 84, 67-101.	2.4	69
102	Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpollE phosphatase to the prespore side of the asymmetricAseptum. Genes and Development, 1998, 12, 1371-1380.	5.9	69
103	Dynamic proteins and a cytoskeleton in bacteria. Nature Cell Biology, 2003, 5, 175-178.	10.3	68
104	Identification of sporulation genes by genome-wide analysis of the if E regulon of Bacillus subtilis. Microbiology (United Kingdom), 2003, 149, 3023-3034.	1.8	65
105	Possible role of L-form switching in recurrent urinary tract infection. Nature Communications, 2019, 10, 4379.	12.8	65
106	The role of ?Fin prespore-specific transcription in Bacillus subtilis. Molecular Microbiology, 1991, 5, 757-767.	2.5	64
107	Regulated intramembrane proteolysis of FtsL protein and the control of cell division inBacillus subtilis. Molecular Microbiology, 2006, 62, 580-591.	2.5	64
108	<i>In vivo</i> localizations of membrane stress controllers PspA and PspG in <i>Escherichia coli</i> Molecular Microbiology, 2009, 73, 382-396.	2.5	63

#	Article	IF	CITATIONS
109	Duplicated sporulation genes in bacteria. FEBS Letters, 1985, 188, 184-188.	2.8	62
110	Use of green fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology (United Kingdom), 1996, 142, 733-740.	1.8	60
111	Upheaval in the bacterial nucleoid: an active chromosome segregation mechanism. Trends in Genetics, 1999, 15, 70-74.	6.7	60
112	Chromosome Partitioning in Bacteria. Annual Review of Genetics, 1995, 29, 41-67.	7.6	59
113	The role of the sporulation gene spollIE in the regulation of prespore-specific gene expression in Bacillus subtilis. Molecular Microbiology, 1989, 3, 1247-1255.	2.5	58
114	The Cell Wall Regulator <code>if^ISpecifically</code> Suppresses the Lethal Phenotype of <i>mbl</i> Mutants in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2009, 191, 1404-1413.	2.2	57
115	AdivIVAnull mutant ofStaphylococcus aureusundergoes normal cell division. FEMS Microbiology Letters, 2004, 240, 145-149.	1.8	56
116	Essential Bacterial Functions Encoded by Gene Pairs. Journal of Bacteriology, 2007, 189, 591-602.	2.2	56
117	Determination of cell fate in Bacillus subtilis. Trends in Genetics, 1996, 12, 31-34.	6.7	55
118	Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR. Journal of Bacteriology, 1997, 179, 5636-5638.	2.2	55
119	A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO Journal, 2002, 21, 4001-4011.	7.8	52
120	PBP1 Is a Component of the Bacillus subtilis Cell Division Machinery. Journal of Bacteriology, 2004, 186, 5153-5156.	2.2	51
121	Mode of Action of Kanglemycin A, an Ansamycin Natural Product that Is Active against Rifampicin-Resistant Mycobacterium tuberculosis. Molecular Cell, 2018, 72, 263-274.e5.	9.7	51
122	Cell Wall Deficiency as a Coping Strategy for Stress. Trends in Microbiology, 2019, 27, 1025-1033.	7.7	51
123	Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin. ACS Chemical Biology, 2018, 13, 207-214.	3.4	50
124	Sequential activation of dual promoters by different Sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Molecular Microbiology, 1991, 5, 1363-1373.	2.5	49
125	Compartmentalized distribution of the proteins controlling the presporeâ€specific transcription factor Ïf F of Bacillus subtilis. Genes To Cells, 1996, 1, 881-894.	1.2	49
126	The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13347-13352.	7.1	48

#	Article	IF	CITATIONS
127	The Replicase Sliding Clamp Dynamically Accumulates behind Progressing Replication Forks in Bacillus subtilis Cells. Molecular Cell, 2011, 41, 720-732.	9.7	48
128	The rod to Lâ€form transition of <i>Bacillus subtilis</i> is limited by a requirement for the protoplast to escape from the cell wall sacculus. Molecular Microbiology, 2012, 83, 52-66.	2.5	48
129	The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivlC. Molecular Microbiology, 2000, 36, 846-855.	2.5	47
130	Bacterial Cell Morphogenesis Does Not Require a Preexisting Template Structure. Current Biology, 2014, 24, 863-867.	3.9	47
131	Crucial role for central carbon metabolism in the bacterial L-form switch and killing by \hat{l}^2 -lactam antibiotics. Nature Microbiology, 2019, 4, 1716-1726.	13.3	47
132	Differential gene expression during sporulation in Bacillus subtilis: structure and regulation of the spollID gene. Molecular Microbiology, 1990, 4, 543-551.	2.5	45
133	Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis. Molecular Microbiology, 1994, 13, 655-662.	2.5	44
134	Establishing differential gene expression in sporulating Bacillus subtilis: phosphorylation of SpolIAA (anti-anti- ifF) alters its conformation and prevents formation of a SpolIAA/SpolIAB/ADP complex. Molecular Microbiology, 1996, 19, 901-907.	2.5	43
135	The Bacillus subtilis spoOJ gene: evidence for involvement in catabolite repression of sporulation. Journal of Bacteriology, 1991, 173, 1911-1919.	2.2	42
136	Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Molecular Microbiology, 1999, 33, 1015-1026.	2.5	41
137	Polar Targeting of DivIVA in Bacillus subtilis Is Not Directly Dependent on FtsZ or PBP 2B. Journal of Bacteriology, 2003, 185, 693-697.	2.2	41
138	Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis beta-galactosidase and its regulator. Journal of Bacteriology, 1990, 172, 488-490.	2.2	40
139	Establishment of cell-specific transcription during sporulation inBacillus subtilis. Molecular Microbiology, 1992, 6, 689-695.	2.5	40
140	Septation and chromosome segregation during sporulation in Bacillus subtilis. Current Opinion in Microbiology, 2001, 4, 660-666.	5.1	40
141	A role for divisionâ€siteâ€selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Molecular Microbiology, 2003, 47, 159-169.	2.5	38
142	Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of <i>Bacillus subtilis</i> Molecular Microbiology, 2016, 101, 333-350.	2.5	38
143	Antibiotic tolerance. PLoS Pathogens, 2020, 16, e1008892.	4.7	38
144	Selectivity for d -Lactate Incorporation into the Peptidoglycan Precursors of Lactobacillus plantarum : Role of Aad, a VanX-Like d -Alanyl- d -Alanine Dipeptidase. Journal of Bacteriology, 2007, 189, 4332-4337.	2.2	37

#	Article	IF	CITATIONS
145	The cell differentiation protein SpollE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. Molecular Microbiology, 2002, 45, 1119-1130.	2.5	36
146	Transformation of Environmental Bacillus subtilis Isolates by Transiently Inducing Genetic Competence. PLoS ONE, 2010, 5, e9724.	2.5	35
147	DNA sequence of the murE-murD region of Bacillus subtilis 168. Journal of General Microbiology, 1993, 139, 361-370.	2.3	34
148	Diversity and redundancy in bacterial chromosome segregation mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 497-505.	4.0	34
149	Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage φ29. EMBO Journal, 2005, 24, 3647-3657.	7.8	33
150	ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 2053-2064.	1.8	33
151	The Conserved DNA-Binding Protein WhiA Is Involved in Cell Division in Bacillus subtilis. Journal of Bacteriology, 2013, 195, 5450-5460.	2.2	33
152	Functional redundancy of division specific penicillinâ€binding proteins in <i>Bacillus subtilis</i> Molecular Microbiology, 2017, 106, 304-318.	2.5	32
153	Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spollIC. Journal of Bacteriology, 1988, 170, 1162-1167.	2.2	31
154	Timing and genetic regulation of commitment to sporulation in Bacillus subtilis. Microbiology (United Kingdom), 1996, 142, 3445-3452.	1.8	31
155	Cell wall-deficient, L-form bacteria in the 21st century: a personal perspective. Biochemical Society Transactions, 2017, 45, 287-295.	3.4	31
156	A new bacteriophage vector for cloning in Bacillus subtilis and the use of \tilde{A}_{3} 105 for protein synthesis in maxicells. Gene, 1989, 81, 35-43.	2.2	30
157	Type II Toxin-Antitoxin Systems and Persister Cells. MBio, 2018, 9, .	4.1	28
158	An efficient expression and secretion system based on Bacillus subtilis phage \ddot{l} 105 and its use for the production of B. cereus \hat{l}^2 -lactamase I. Gene, 1993, 133, 47-53.	2.2	27
159	Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis. Molecular Microbiology, 2002, 42, 1211-1221.	2.5	27
160	Wall proficient E. coli capable of sustained growth in the absence of the Z-ring division machine. Nature Microbiology, 2016, 1, 16091.	13.3	27
161	A mechanism for FtsZ-independent proliferation in Streptomyces. Nature Communications, 2017, 8, 1378.	12.8	26
162	Characterization of the parB-Like yyaA Gene of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 1102-1111.	2.2	25

#	Article	IF	Citations
163	Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Molecular Microbiology, 2004, 55, 349-367.	2.5	25
164	Structural Reassignment and Absolute Stereochemistry of Madurastatin C1 (MBJ-0034) and the Related Aziridine Siderophores: Madurastatins A1, B1, and MBJ-0035. Journal of Natural Products, 2017, 80, 1558-1562.	3.0	25
165	Branched pattern of regulatory interactions between late sporulation genes in Bacillus subtilis. Journal of Bacteriology, 1988, 170, 796-801.	2.2	24
166	CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Molecular Cell, 2021, 81, 3623-3636.e6.	9.7	22
167	Identification and Characterization of a New Prespore-Specific Regulatory Gene, rsfA, of Bacillus subtilis. Journal of Bacteriology, 2000, 182, 418-424.	2.2	22
168	Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene. Molecular Microbiology, 1989, 3, 1053-1060.	2.5	21
169	Use of integrational plasmid excision to identify cellular localization of gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology, 1990, 172, 6937-6941.	2.2	21
170	Bacillus subtilis SpolIID protein binds to two sites in the spoVD promoter and represses transcription by sigmaE RNA polymerase. Journal of Bacteriology, 1997, 179, 972-975.	2.2	21
171	Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis. Microbiology (United Kingdom), 2009, 155, 3611-3621.	1.8	21
172	Geometric principles underlying the proliferation of a model cell system. Nature Communications, 2020, 11, 4149.	12.8	21
173	From spores to antibiotics via the cell cycle. Microbiology (United Kingdom), 2010, 156, 1-13.	1.8	20
174	Dynamic relocalization of phage φ29 DNA during replication and the role of the viral protein p16.7. EMBO Journal, 2000, 19, 4182-4190.	7.8	17
175	A benzamideâ€dependent <i>fts</i> <scp><i>Z</i></scp> mutant reveals residues crucial for <scp>Z</scp> â€ring assembly. Molecular Microbiology, 2016, 99, 1028-1042.	2.5	17
176	Characterization of an insertion in the phage φ105 genome that blocks host Bacillus subtilis lysis and provides strong expression of heterologous genes. Gene, 1995, 154, 1-6.	2.2	16
177	Analysis of the Essential Cell Division Gene ftsL ofBacillus subtilis by Mutagenesis and Heterologous Complementation. Journal of Bacteriology, 2000, 182, 5572-5579.	2.2	16
178	Analysis of the Interaction between the Transcription Factor if G and the Anti-Sigma Factor SpollAB of Bacillus subtilis. Journal of Bacteriology, 2003, 185, 4615-4619.	2.2	16
179	Effects of new mutations in the spollAB gene of Bacillus subtilis on the regulation of ÂF and ÂG activities. Journal of General Microbiology, 1993, 139, 3197-3203.	2.3	15
180	A rapid and reliable one-step method for isolating DNA fragments from agarose gels. Nucleic Acids Research, 1990, 18, 5324-5324.	14.5	13

#	Article	IF	CITATIONS
181	Possible intermediate steps in the evolution of a prokaryotic developmental system. Proceedings of the Royal Society B: Biological Sciences, 1991, 244, 117-121.	2.6	13
182	The spollIA locus is not a major determinant of prespore-specific gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology, 1990, 172, 6930-6936.	2.2	12
183	Two separable functional domains in the $\ddot{l}f$ -subunit of RNA polymerase inBacillus subtilis? FEBS Letters, 1987, 224, 257-260.	2.8	11
184	Dynamic Proteins in Bacteria. Developmental Cell, 2001, 1, 10-11.	7.0	11
185	Functional and Morphological Adaptation to Peptidoglycan Precursor Alteration in Lactococcus lactis. Journal of Biological Chemistry, 2010, 285, 24003-24013.	3.4	11
186	Upper limit for DNA packaging by Bacillus subtilis bacteriophage i• 105: Isolation of phage deletion mutants by induction of oversized prophages. Molecular Genetics and Genomics, 1987, 210, 347-351.	2.4	10
187	Control of the cell-specificity of $\ddot{l}f$ F activity in Bacillus subtilis. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 537-542.	4.0	10
188	Genetic analysis of the Bacillus subtilis sigG promoter, which controls the sporulation-specific transcription factor if G. Microbiology (United Kingdom), 2004, 150, 2277-2287.	1.8	10
189	A 28 kbp segment from the spoVM region of the Bacillus subtilis 168 genome. Microbiology (United) Tj ETQq 1	1 0.784314 1.8	4 rgBT /Overlo
190	Crystal structure of S. aureus YlaN, an essential leucine rich protein involved in the control of cell shape. Proteins: Structure, Function and Bioinformatics, 2007, 68, 438-445.	2.6	9
191	Production of 17- <i>O</i> -demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by <i>Streptomyces hygroscopicus</i> DEM20745. Natural Product Research, 2017, 31, 1895-1900.	1.8	9
192	Screening and purification of natural products from Actinomycetes that affect the cell shape of fission yeast. Journal of Cell Science, 2017, 130, 3173-3185.	2.0	9
193	Chromosome strand segregation during sporulation in Bacillus subtilis. Molecular Microbiology, 1991, 5, 1145-1149.	2.5	8
194	A novel Bacillus subtilis expression vector based on bacteriophage φ105. Gene, 1992, 121, 137-142.	2.2	8
195	Balanced transcription of cell division genes in <i><scp>B</scp>acillus subtilis</i> as revealed by single cell analysis. Environmental Microbiology, 2013, 15, 3196-3209.	3.8	8
196	Microfluidic time″apse analysis and reevaluation of theBacillus subtiliscell cycle. MicrobiologyOpen, 2019, 8, e876.	3.0	8
197	Regulation of sporulation. Nature, 1988, 333, 399-400.	27.8	7
198	Cell Division during Growth and Sporulation. , 2014, , 97-109.		7

#	Article	IF	CITATIONS
199	ylmD and ylmE genes are dispensable for growth, cross-wall formation and sporulation in Streptomyces venezuelae. Heliyon, 2017, 3, e00459.	3.2	5
200	A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Research, 2021, 49, 5553-5567.	14.5	5
201	Effects of oriC relocation on control of replication initiation in Bacillus subtilis. Microbiology (United Kingdom), 2009, 155, 3070-3082.	1.8	4
202	Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. Journal of Bacteriology, 2020, 202, .	2.2	4
203	Bacillus subtilis Sporulation: a Paradigm for the Spatial and Temporal Control of Gene Expression. , 1992, , 28-44.		4
204	A model for asymmetric septum formation during sporulation in Bacillus subtilis. Molecular Microbiology, 1991, 5, 785-789.	2.5	3
205	Growth and development. Current Opinion in Microbiology, 2003, 6, 531-533.	5.1	3
206	Characterization of the L-form switch in the Gram-negative pathogen <i>Streptobacillus moniliformis</i> . FEMS Microbiology Letters, 2021, 368, .	1.8	3
207	Medium-dependent sporulation resulting from a mutation in the spollAB gene of Bacillus subtilis. Microbiology (United Kingdom), 1995, 141, 1763-1769.	1.8	2
208	DNA versus membrane. Nature, 2008, 451, 900-901.	27.8	2
209	A Small Molecule Inhibitor of CTP Synthetase Identified by Differential Activity on a Bacillus subtilis Mutant Deficient in Class A Penicillin-Binding Proteins. Frontiers in Microbiology, 2020, 11, 2001.	3.5	2
210	Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. Archives of Microbiology, 2017, 199, 875-880.	2.2	1
211	Designer chemistry. Environmental Microbiology Reports, 2017, 9, 36-37.	2.4	O