
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734973/publications.pdf Version: 2024-02-01

DIDK HALLED

#	Article	IF	CITATIONS
1	Interactions between the environmental and human microbiota in the preservation of health and genesis of disease: symposium report. Current Opinion in Gastroenterology, 2022, 38, 146-155.	2.3	1
2	Offering Fiber-Enriched Foods Increases Fiber Intake in Adults With or Without Cardiometabolic Risk: A Randomized Controlled Trial. Frontiers in Nutrition, 2022, 9, 816299.	3.7	12
3	Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes, 2022, 14, 2031840.	9.8	52
4	Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 383-397.	17.8	87
5	Analysis of Fecal, Salivary, and Tissue Microbiome in Barrett's Esophagus, Dysplasia, and Esophageal Adenocarcinoma. , 2022, 1, 755-766.		2
6	Dysregulated lipid metabolism in colorectal cancer. Current Opinion in Gastroenterology, 2022, 38, 162-167.	2.3	11
7	Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury. Mucosal Immunology, 2022, 15, 595-604.	6.0	36
8	A randomization-based causal inference framework for uncovering environmental exposure effects on human gut microbiota. PLoS Computational Biology, 2022, 18, e1010044.	3.2	8
9	A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. Journal of Clinical Investigation, 2022, 132, .	8.2	21
10	Multi-omic modelling of inflammatory bowel disease with regularized canonical correlation analysis. PLoS ONE, 2021, 16, e0246367.	2.5	9
11	Microbe–Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers, 2021, 13, 616.	3.7	22
12	Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome, 2021, 9, 61.	11.1	47
13	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	27.8	233
14	Modeling microbe-host interaction in the pathogenesis of Crohn's disease. International Journal of Medical Microbiology, 2021, 311, 151489.	3.6	5
15	Recent advances in culture-based gut microbiome research. International Journal of Medical Microbiology, 2021, 311, 151485.	3.6	15
16	Development of a Highly Sensitive Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry Quantitation Method for Fecal Bile Acids and Application on Crohn's Disease Studies. Journal of Agricultural and Food Chemistry, 2021, 69, 5238-5251.	5.2	24
17	Longitudinal Profiles of Dietary and Microbial Metabolites in Formula- and Breastfed Infants. Frontiers in Molecular Biosciences, 2021, 8, 660456.	3.5	19
18	Intestinal microbiota in health and disease – seeding multidisciplinary research in Germany. International Journal of Medical Microbiology, 2021, 311, 151514.	3.6	0

#	Article	IF	CITATIONS
19	MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microbial Biotechnology, 2021, 14, 1757-1770.	4.2	12
20	Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME Communications, 2021, 1, .	4.2	60
21	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	12.8	25
22	Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nature Genetics, 2021, 53, 147-155.	21.4	101
23	Microbial Signals Link Westernized Diet to Metabolic Inflammation: More Evidence to Resolve Controversies. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 343-344.	4.5	0
24	Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Molecular Metabolism, 2020, 42, 101076.	6.5	50
25	Activating Transcription Factor 6 Mediates Inflammatory Signals in Intestinal Epithelial Cells Upon Endoplasmic Reticulum Stress. Gastroenterology, 2020, 159, 1357-1374.e10.	1.3	73
26	Integrated microbiota and metabolite profiles link Crohn's disease to sulfur metabolism. Nature Communications, 2020, 11, 4322.	12.8	79
27	Mechanisms of Interactions between Bile Acids and Plant Compounds—A Review. International Journal of Molecular Sciences, 2020, 21, 6495.	4.1	40
28	Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism – Update to the Human Model and Expansion of Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 577656.	4.1	47
29	Comparing Circadian Rhythmicity in the Human Gut Microbiome. STAR Protocols, 2020, 1, 100148.	1.2	33
30	Comprehensive Lifestyle-Modification in Patients with Ulcerative Colitis–A Randomized Controlled Trial. Journal of Clinical Medicine, 2020, 9, 3087.	2.4	14
31	Partial enteral nutrition has no benefit on bone health but improves growth in paediatric patients with quiescent or mild Crohn's disease. Clinical Nutrition, 2020, 39, 3786-3796.	5.0	10
32	Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence. Gut, 2020, 69, 1939-1951.	12.1	100
33	Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host and Microbe, 2020, 28, 258-272.e6.	11.0	160
34	Investigation of Adiposity Measures and Operational Taxonomic unit (OTU) Data Transformation Procedures in Stool Samples from a German Cohort Study Using Machine Learning Algorithms. Microorganisms, 2020, 8, 547.	3.6	1
35	Mitochondrial Metabolism in the Intestinal Stem Cell Niche—Sensing and Signaling in Health and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 602814.	3.7	26
36	Multi-omics in IBD biomarker discovery: the missing links. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 587-588.	17.8	24

#	Article	IF	CITATIONS
37	Complex Bacterial Consortia Reprogram the Colitogenic Activity of Enterococcus faecalis in a Gnotobiotic Mouse Model of Chronic, Immune-Mediated Colitis. Frontiers in Immunology, 2019, 10, 1420.	4.8	40
38	High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett's Esophagus via Interleukin 8 and Alterations to the Gut Microbiome. Gastroenterology, 2019, 157, 492-506.e2.	1.3	100
39	Comparison of iron-reduced and iron-supplemented semisynthetic diets in T cell transfer colitis. PLoS ONE, 2019, 14, e0218332.	2.5	7
40	In Vitro Interactions of Dietary Fibre Enriched Food Ingredients with Primary and Secondary Bile Acids. Nutrients, 2019, 11, 1424.	4.1	45
41	Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions. Nutrients, 2019, 11, 2117.	4.1	19
42	Tu1858 – Segmented Filamentous Bacteria Induce Alternative Th17 Differentiation and Ileo-Colonic Crohn's Disease-Like Inflammation. Gastroenterology, 2019, 156, S-1149.	1.3	2
43	Milk-Derived Amadori Products in Feces of Formula-Fed Infants. Journal of Agricultural and Food Chemistry, 2019, 67, 8061-8069.	5.2	16
44	Strain-Level Diversity in the Gut: The P.Âcopri Case. Cell Host and Microbe, 2019, 25, 349-350.	11.0	8
45	Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry—Investigation of Pre-Analytic Stability. Biomolecules, 2019, 9, 121.	4.0	68
46	ER Stress and the UPR in Shaping Intestinal Tissue Homeostasis and Immunity. Frontiers in Immunology, 2019, 10, 2825.	4.8	75
47	An Open-Labeled Study on Fecal Microbiota Transfer in Irritable Bowel Syndrome Patients Reveals Improvement in Abdominal Pain Associated with the Relative Abundance of Akkermansia Muciniphila. Digestion, 2019, 100, 127-138.	2.3	44
48	Microbial Signatures as a Predictive Tool in IBD—Pearls and Pitfalls. Inflammatory Bowel Diseases, 2018, 24, 1123-1132.	1.9	10
49	Short-Term Overfeeding with Dairy Cream Does Not Modify Gut Permeability, the Fecal Microbiota, or Glucose Metabolism in Young Healthy Men. Journal of Nutrition, 2018, 148, 77-85.	2.9	10
50	Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology, 2018, 155, 1539-1552.e12.	1.3	85
51	Differentiation of Adsorptive and Viscous Effects of Dietary Fibres on Bile Acid Release by Means of In Vitro Digestion and Dialysis. International Journal of Molecular Sciences, 2018, 19, 2193.	4.1	36
52	The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nature Communications, 2018, 9, 3760.	12.8	200
53	Mitochondrial function — gatekeeper of intestinal epithelial cell homeostasis. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 497-516.	17.8	190

54 Intestinal Microbiome in Health and Disease: Introduction. , 2018, , 1-3.

#	Article	IF	CITATIONS
55	Microbiome and Diseases: Inflammatory Bowel Diseases. , 2018, , 151-174.		0
56	The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6, 134.	11.1	169
57	The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology, 2018, 9, 1900.	3.5	47
58	Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients. PLoS ONE, 2018, 13, e0193943.	2.5	32
59	Increased Pancreatic Protease Activity in Response to Antibiotics Impairs Gut Barrier and Triggers Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 370-388.e3.	4.5	22
60	Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut, 2017, 66, 863-871.	12.1	237
61	Dysbiosis in Crohn's disease - Joint action of stochastic injuries and focal inflammation in the gut. Gut Microbes, 2017, 8, 53-58.	9.8	16
62	Functional relevance of microbiome signatures: The correlation era requires tools for consolidation. Journal of Allergy and Clinical Immunology, 2017, 139, 1092-1098.	2.9	20
63	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
64	Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS. Cancer Cell, 2017, 31, 771-789.e6.	16.8	140
65	Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Scientific Reports, 2017, 7, 11047.	3.3	78
66	Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Scientific Reports, 2017, 7, 11955.	3.3	119
67	Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. American Journal of Clinical Nutrition, 2017, 106, 1274-1286.	4.7	124
68	Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Frontiers in Immunology, 2017, 8, 1927.	4.8	48
69	Gut barrier impairment by highâ€fat diet in mice depends on housing conditions. Molecular Nutrition and Food Research, 2016, 60, 897-908.	3.3	49
70	Su1879 Spatial 3D-Stereomicroscopic, Microbial and Metabolic Characterization of Intestinal Villous Erosions and Ulcerations in Mice. Gastroenterology, 2016, 150, S578.	1.3	3
71	Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development. Cancer Cell, 2016, 30, 308-323.	16.8	68
72	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	15.1	26

#	Article	IF	CITATIONS
73	Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Molecular Metabolism, 2016, 5, 1162-1174.	6.5	170
74	Mitochondrial function controls intestinal epithelial stemness and proliferation. Nature Communications, 2016, 7, 13171.	12.8	134
75	The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 2016, 1, 16131.	13.3	465
76	IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Scientific Reports, 2016, 6, 33721.	3.3	330
77	Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. Journal of Allergy and Clinical Immunology, 2016, 138, 592-596.	2.9	54
78	Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. International Journal of Medical Microbiology, 2016, 306, 343-355.	3.6	196
79	Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 2016, 306, 302-309.	3.6	121
80	Intestinal microbiota: From sequencing to function. International Journal of Medical Microbiology, 2016, 306, 255-256.	3.6	1
81	Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut, 2016, 65, 225-237.	12.1	317
82	Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Scientific Reports, 2015, 5, 16831.	3.3	117
83	Physiological relevance of food grade microcapsules: Impact of milk protein based microcapsules on inflammation in mouse models for inflammatory bowel diseases. Molecular Nutrition and Food Research, 2015, 59, 1629-1634.	3.3	5
84	Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.	3.3	95
85	Maternal High-fat Diet Accelerates Development of Crohn's Disease-like Ileitis in TNFΔARE/WT Offspring. Inflammatory Bowel Diseases, 2015, 21, 2016-2025.	1.9	16
86	Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2015, 31, 464-470.	2.3	31
87	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	4.8	83
88	Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels. PLoS Pathogens, 2015, 11, e1004911.	4.7	42
89	<i>Helicobacter pylori</i> ³ -glutamyltranspeptidase impairs T-lymphocyte function by compromising metabolic adaption through inhibition of cMyc and IRF4 expression. Cellular Microbiology, 2015, 17, 51-61.	2.1	28
90	Fetal gut laser microdissection in combination with RNA preamplification enables epithelial-specific transcriptional profiling. Journal of Immunological Methods, 2015, 416, 189-192.	1.4	3

#	Article	IF	CITATIONS
91	Dietâ€induced obesity causes metabolic impairment independent of alterations in gut barrier integrity. Molecular Nutrition and Food Research, 2015, 59, 968-978.	3.3	31
92	Role of the Gut Microbiota in Maintaining GI Health: Highlights on Inflammatory Bowel Disease. Molecular and Integrative Toxicology, 2015, , 261-310.	0.5	0
93	Metabolic Phenotyping of an Adoptive Transfer Mouse Model of Experimental Colitis and Impact of Dietary Fish Oil Intake. Journal of Proteome Research, 2015, 14, 1911-1919.	3.7	9
94	Protective effect of milk protein based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. Journal of Functional Foods, 2015, 15, 116-125.	3.4	34
95	Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR Journal, 2015, 56, 179-191.	1.8	40
96	Orally administered allyl sulfides from garlic ameliorate murine colitis. Molecular Nutrition and Food Research, 2015, 59, 434-442.	3.3	36
97	Murimonas intestini gen. nov., sp. nov., an acetate-producing bacterium of the family Lachnospiraceae isolated from the mouse gut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 870-878.	1.7	25
98	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	9.8	170
99	Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion. MBio, 2014, 5, e01802-14.	4.1	42
100	Colonic Expression of the Peptide Transporter PEPT1 Is Downregulated During Intestinal Inflammation and Is Not Required for NOD2-dependent Immune Activation. Inflammatory Bowel Diseases, 2014, 20, 671-684.	1.9	31
101	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	9.8	583
102	Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes. Cancer Cell, 2014, 26, 549-564.	16.8	531
103	Transcriptome analysis of Enterococcus faecalis toward its adaption to surviving in the mouse intestinal tract. Archives of Microbiology, 2014, 196, 423-433.	2.2	20
104	Fetal Exposure to Maternal Inflammation Does Not Affect Postnatal Development of Genetically-Driven lleitis and Colitis. PLoS ONE, 2014, 9, e98237.	2.5	6
105	A guide to histomorphological evaluation of intestinal inflammation in mouse models. International Journal of Clinical and Experimental Pathology, 2014, 7, 4557-76.	0.5	340
106	PKR-signaling in DSS-induced Colitis. Inflammatory Bowel Diseases, 2013, 19, E48-E49.	1.9	0
107	Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse. Archives of Microbiology, 2013, 195, 43-49.	2.2	20
108	Effects of increase in fish oil intake on intestinal eicosanoids and inflammation in a mouse model of colitis. Lipids in Health and Disease, 2013, 12, 81.	3.0	19

#	Article	IF	CITATIONS
109	PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Engineering, Design and Selection, 2013, 26, 489-501.	2.1	267
110	Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4606-4612.	1.7	95
111	Republished: Bacterial proteases in IBD and IBS. Postgraduate Medical Journal, 2013, 89, 25-33.	1.8	8
112	Identification of fitness determinants in Enterococcus faecalis by differential proteomics. Archives of Microbiology, 2013, 195, 121-130.	2.2	3
113	Immunfunktion und Entzündungspräention. Springer-Lehrbuch, 2013, , 43-66.	0.0	0
114	Darmgesundheit und Mikrobiota. Springer-Lehrbuch, 2013, , 67-83.	0.0	1
115	Parvibacter caecicola gen. nov., sp. nov., a bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2642-2648.	1.7	32
116	The peptide transporter PEPT1 is expressed in distal colon in rodents and humans and contributes to water absorption. American Journal of Physiology - Renal Physiology, 2013, 305, G66-G73.	3.4	40
117	Lactocepin as a protective microbial structure in the context of IBD. Gut Microbes, 2013, 4, 152-157.	9.8	27
118	Properties of myenteric neurones and mucosal functions in the distal colon of dietâ€induced obese mice. Journal of Physiology, 2013, 591, 5125-5139.	2.9	20
119	Semisynthetic Diet Ameliorates Crohn's Disease–Like Ileitis in TNFΔARE/WT Mice Through Antigen-Independent Mechanisms of Gluten. Inflammatory Bowel Diseases, 2013, 19, 1285-1294.	1.9	39
120	High Fat Diet Accelerates Pathogenesis of Murine Crohn's Disease-Like Ileitis Independently of Obesity. PLoS ONE, 2013, 8, e71661.	2.5	96
121	Endoplasmic Reticulum Stress Response Promotes Cytotoxic Phenotype of CD8αβ+ Intraepithelial Lymphocytes in a Mouse Model for Crohn's Disease-like Ileitis. Journal of Immunology, 2012, 189, 1510-1520.	0.8	31
122	Bacterial proteases in IBD and IBS. Gut, 2012, 61, 1610-1618.	12.1	97
123	Unfolded Protein Responses in the Intestinal Epithelium. Journal of Clinical Gastroenterology, 2012, 46, S3-S5.	2.2	11
124	Nutrigenomics and Nutrigenetics in Inflammatory Bowel Diseases. Journal of Clinical Gastroenterology, 2012, 46, 735-747.	2.2	29
125	Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut, 2012, 61, 1269-1278.	12.1	125
126	Gut matters: Microbe-host interactions in allergic diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 1452-1459.	2.9	68

#	Article	IF	CITATIONS
127	Lactocepin Secreted By Lactobacillus Exerts Anti-Inflammatory Effects By Selectively Degrading Proinflammatory Chemokines. Cell Host and Microbe, 2012, 11, 387-396.	11.0	196
128	Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 2012, 51, 637-663.	3.9	1,320
129	Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Archives of Microbiology, 2012, 194, 901-907.	2.2	76
130	Mitochondria at the Interface Between Danger Signaling and Metabolism: Role of Unfolded Protein Responses in Chronic Inflammation. Inflammatory Bowel Diseases, 2012, 18, 1364-1377.	1.9	42
131	Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut, 2011, 60, 325-333.	12.1	251
132	Enterococcus faecalis Metalloprotease Compromises Epithelial Barrier and Contributes to Intestinal Inflammation. Gastroenterology, 2011, 141, 959-971.	1.3	246
133	Gene-environment interaction in chronic disease: AÂEuropean Science Foundation Forward Look. Journal of Allergy and Clinical Immunology, 2011, 128, S27-S49.	2.9	30
134	Structure–function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochemical and Biophysical Research Communications, 2011, 409, 610-615.	2.1	75
135	Identification of an up-regulated anti-apoptotic network in the internal thoracic artery. International Journal of Cardiology, 2011, 149, 221-226.	1.7	2
136	Metabolic Phenotyping of the Crohn's Disease-like IBD Etiopathology in the TNF ^{ΔARE/WT} Mouse Model. Journal of Proteome Research, 2011, 10, 5523-5535.	3.7	63
137	Gene-environment interactions in chronic inflammatory disease. Nature Immunology, 2011, 12, 273-277.	14.5	148
138	Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. European Journal of Nutrition, 2011, 50, 219-233.	3.9	70
139	Impact of a probiotic <i>Enterococcus faecalis</i> in a gnotobiotic mouse model of experimental colitis. Molecular Nutrition and Food Research, 2011, 55, 703-713.	3.3	18
140	Catechols in caffeic acid phenethyl ester are essential for inhibition of TNFâ€mediated IPâ€10 expression through NFâ€PBâ€dependent but HOâ€1†and p38â€independent mechanisms in mouse intestinal epithelial c Molecular Nutrition and Food Research, 2011, 55, 1850-1861.	ells.3	19
141	Intestinal steroid profiles and microbiota composition in colitic mice. Gut Microbes, 2011, 2, 159-166.	9.8	28
142	Role of the adipocyte-specific NF-κB activity in the regulation of IP-10 and T cell migration. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E304-E311.	3.5	16
143	Nutrigenomics and IBD. Journal of Clinical Gastroenterology, 2010, 44, S6-S9.	2.2	23
144	Posttranslational Inhibition of Proinflammatory Chemokine Secretion in Intestinal Epithelial Cells. Journal of Clinical Gastroenterology, 2010, 44, S10-S15.	2.2	10

#	Article	IF	CITATIONS
145	Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Archives of Microbiology, 2010, 192, 427-435.	2.2	25
146	High Enrichment of MMP-9 and Carboxypeptidase A by Tweezing Adsorptive Bubble Separation (TABS). Applied Biochemistry and Biotechnology, 2010, 162, 1547-1557.	2.9	4
147	Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of intestinal inflammatory Bowel Diseases, 2010, 16, 1871-1881.	1.9	61
148	Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1527-1531.	1.7	66
149	Safety assessment of probiotics for human use. Gut Microbes, 2010, 1, 164-185.	9.8	513
150	Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Probiotics in Chronic Inflammatory Bowel Disease and the Functional Disorder Irritable Bowel Syndrome. Journal of Nutrition, 2010, 140, 690S-697S.	2.9	79
151	Microbe-host interaction in chronic diseases. International Journal of Medical Microbiology, 2010, 300, 1-2.	3.6	3
152	Molecular crosstalk of probiotic bacteria with the intestinal immune system: Clinical relevance in the context of inflammatory bowel disease. International Journal of Medical Microbiology, 2010, 300, 63-73.	3.6	92
153	Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Current Status and Recommendations for Future Research1–3. Journal of Nutrition, 2010, 140, 671S-676S.	2.9	217
154	Balancing inflammatory, lipid, and xenobiotic signaling pathways by VSL#3, a biotherapeutic agent, in the treatment of inflammatory bowel disease. Inflammatory Bowel Diseases, 2009, 15, 1721-1736.	1.9	64
155	Reduced microbial diversity and high numbers of one single <i>Escherichia coli</i> strain in the intestine of colitic mice. Environmental Microbiology, 2009, 11, 1562-1571.	3.8	47
156	Loss of Toll-like Receptor 2 and 4 Leads to Differential Induction of Endoplasmic Reticulum Stress and Proapoptotic Responses in the Intestinal Epithelium under Conditions of Chronic Inflammation. Journal of Proteome Research, 2009, 8, 4406-4417.	3.7	25
157	Metabolic Assessment of Gradual Development of Moderate Experimental Colitis in IL-10 Deficient Mice. Journal of Proteome Research, 2009, 8, 2376-2387.	3.7	73
158	Enterococcus faecalis Strains Differentially Regulate Alix/AIP1 Protein Expression and ERK 1/2 Activation in Intestinal Epithelial Cells in the Context of Chronic Experimental Colitis. Journal of Proteome Research, 2009, 8, 1183-1192.	3.7	13
159	Intestinal Epithelial Cell Proteome from Wild-Type and TNF ^{ΔARE/WT} Mice: Effect of Iron on the Development of Chronic Ileitis. Journal of Proteome Research, 2009, 8, 3252-3264.	3.7	24
160	Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1805-1812.	1.7	97
161	Post-Translational Inhibition of IP-10 Secretion in IEC by Probiotic Bacteria: Impact on Chronic Inflammation. PLoS ONE, 2009, 4, e4365.	2.5	71
162	The <i>ATG16L1</i> Gene Variants rs2241879 and rs2241880 (T300A) Are Strongly Associated With Susceptibility to Crohn's Disease in the German Population. American Journal of Gastroenterology, 2008, 103, 682-691.	0.4	101

#	Article	IF	CITATIONS
163	Conversion of Daidzein and Genistein by an Anaerobic Bacterium Newly Isolated from the Mouse Intestine. Applied and Environmental Microbiology, 2008, 74, 4847-4852.	3.1	110
164	Lactobacillus reuteri 100-23 Transiently Activates Intestinal Epithelial Cells of Mice That Have a Complex Microbiota during Early Stages of Colonization13. Journal of Nutrition, 2008, 138, 1684-1691.	2.9	42
165	Molecular Interactions of Commensal Enteric Bacteria with the Intestinal Epithelium and the Mucosal Immune System. Bioscience and Microflora, 2008, 27, 37-48.	0.5	0
166	Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut, 2007, 56, 1257-1265.	12.1	105
167	Differential Protein Expression Profile in the Intestinal Epithelium from Patients with Inflammatory Bowel Disease. Journal of Proteome Research, 2007, 6, 1114-1125.	3.7	111
168	Intestinal Epithelial Cell Proteome in IL-10 Deficient Mice and IL-10 Receptor Reconstituted Epithelial Cells:  Impact on Chronic Inflammation. Journal of Proteome Research, 2007, 6, 3691-3704.	3.7	27
169	Interleukin-10 Blocked Endoplasmic Reticulum Stress in Intestinal Epithelial Cells: Impact on Chronic Inflammation. Gastroenterology, 2007, 132, 190-207.	1.3	255
170	Quercetin Inhibits TNF-Induced NF-κB Transcription Factor Recruitment to Proinflammatory Gene Promoters in Murine Intestinal Epithelial Cells. Journal of Nutrition, 2007, 137, 1208-1215.	2.9	229
171	Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: Implications for chronic inflammation. Inflammatory Bowel Diseases, 2007, 13, 1153-1164.	1.9	91
172	The role of the selenoprotein S (SELS) gene ?105G>A promoter polymorphism in inflammatory bowel disease and regulation of SELS gene expression in intestinal inflammation. Tissue Antigens, 2007, 70, 238-246.	1.0	36
173	Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 622, 42-57.	1.0	46
174	Interleukin 10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. FASEB Journal, 2007, 21, A589.	0.5	0
175	Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Current Issues in Intestinal Microbiology, 2007, 8, 25-43.	2.5	29
176	Functional Diversity of Flavonoids in the Inhibition of the Proinflammatory NF-κB, IRF, and Akt Signaling Pathways in Murine Intestinal Epithelial Cells. Journal of Nutrition, 2006, 136, 664-671.	2.9	129
177	Intestinal epithelial cell signalling and host-derived negative regulators under chronic inflammation: to be or not to be activated determines the balance towards commensal bacteria. Neurogastroenterology and Motility, 2006, 18, 184-199.	3.0	43
178	IL-10 Gene-Deficient Mice Lack TGF-Beta/Smad-Mediated TLR2 Degradation and Fail to Inhibit Proinflammatory Gene Expression in Intestinal Epithelial Cells under Conditions of Chronic Inflammation. Annals of the New York Academy of Sciences, 2006, 1072, 389-394.	3.8	43
179	IL-10 Gene-Deficient Mice Lack TGF-β/Smad Signaling and Fail to Inhibit Proinflammatory Gene Expression in Intestinal Epithelial Cells after the Colonization with Colitogenic Enterococcus faecalis. Journal of Immunology, 2005, 174, 2990-2999.	0.8	115
180	Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology, 2005, 115, 441-450.	4.4	110

#	Article	IF	CITATIONS
181	15-Deoxy-Δ12,14-prostaglandin J2-mediated ERK Signaling Inhibits Gram-negative Bacteria-induced RelA Phosphorylation and Interleukin-6 Gene Expression in Intestinal Epithelial Cells through Modulation of Protein Phosphatase 2A Activity. Journal of Biological Chemistry, 2004, 279, 36103-36111.	3.4	26
182	Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells. Immunology, 2004, 112, 310-320.	4.4	52
183	Modulation of Cytokine Release by Differentiated CACO-2 Cells in a Compartmentalized Coculture Model with Mononuclear Leucocytes and Nonpathogenic Bacteria. Scandinavian Journal of Immunology, 2004, 60, 477-485.	2.7	92
184	Interaction Between Resident Luminal Bacteria and the Host: Can a Healthy Relationship Turn Sour?. Journal of Pediatric Gastroenterology and Nutrition, 2004, 38, 123-136.	1.8	65
185	Transforming Growth Factor-β1 Inhibits Non-pathogenic Gramnegative Bacteria-induced NF-κB Recruitment to the Interleukin-6 Gene Promoter in Intestinal Epithelial Cells through Modulation of Histone Acetylation. Journal of Biological Chemistry, 2003, 278, 23851-23860.	3.4	125
186	Activation of Human NK Cells by Staphylococci and Lactobacilli Requires Cell Contact-Dependent Costimulation by Autologous Monocytes. Vaccine Journal, 2002, 9, 649-657.	3.1	49
187	IKKβ and Phosphatidylinositol 3-Kinase/Akt Participate in Non-pathogenic Gram-negative Enteric Bacteria-induced RelA Phosphorylation and NF-κB Activation in Both Primary and Intestinal Epithelial Cell Lines. Journal of Biological Chemistry, 2002, 277, 38168-38178.	3.4	152
188	ILâ€10 Producing CD14 ^{low} Monocytes Inhibit Lymphocyteâ€Dependent Activation of Intestinal Epithelial Cells by Commensal Bacteria. Microbiology and Immunology, 2002, 46, 195-205.	1.4	36
189	Probiotics and immune response. Clinical Reviews in Allergy and Immunology, 2002, 22, 287-309.	6.5	57
190	Probiotics and Immune Response. Clinical Reviews in Allergy and Immunology, 2002, 22, 287-310.	6.5	10
191	Activation of Human Peripheral Blood Mononuclear Cells by Nonpathogenic Bacteria In Vitro: Evidence of NK Cells as Primary Targets. Infection and Immunity, 2000, 68, 752-759.	2.2	170
192	Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut, 2000, 47, 79-87.	12.1	396
193	Intestinal microflora and the interaction with immunocompetent cells. Antonie Van Leeuwenhoek, 1999, 76, 199-205.	1.7	25
194	Interactions between commensal bacteria and mucosal immunocompetent cells. International Dairy Journal, 1999, 9, 63-68.	3.0	29
195	Cytokine Secretion by Stimulated Monocytes Depends on the Growth Phase and Heat Treatment of Bacteria. Microbiology and Immunology, 1999, 43, 925-935.	1.4	28
196	Arrhythmic Gut Microbiome Signatures for Risk Profiling of Type-2 Diabetes. SSRN Electronic Journal, 0, , .	0.4	3