Hong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734179/publications.pdf

Version: 2024-02-01

		101384	51492
91	15,788	36	86
papers	citations	h-index	g-index
02	02	02	21240
92	92	92	21248
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. Journal of Colloid and Interface Science, 2022, 606, 793-799.	5.0	21
2	Low-Power Magnetron Sputtering Deposition of Antimonene Nanofilms for Water Splitting Reaction. Micromachines, 2022, 13, 489.	1.4	1
3	Two-Dimensional Palladium Phosphoronitride for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12156-12167.	4.0	10
4	Study of carrier dynamics in strained graphene with giant pseudo-magnetic fields. , 2022, , .		0
5	Sub-ambient radiative cooling under tropical climate using highly reflective polymeric coating. Solar Energy Materials and Solar Cells, 2022, 240, 111723.	3.0	18
6	Switchable Surface Coating for Bifunctional Passive Radiative Cooling and Solar Heating. Advanced Functional Materials, 2022, 32, .	7.8	47
7	Photovoltaicâ€powered supercapacitors for driving overall water splitting: A dualâ€modulated 3D architecture. , 2022, 4, 1262-1273.		21
8	Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH ₂ . Inorganic Chemistry Frontiers, 2022, 9, 3874-3884.	3.0	24
9	The criteria to achieving sub-ambient radiative cooling and its limits in tropical daytime. Building and Environment, 2022, 221, 109281.	3.0	6
10	One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with encapsulated cobalt nanoparticles for oxygen reduction. Journal of Catalysis, 2021, 394, 366-375.	3.1	19
11	Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 4970-4980.	3 . 2	5
12	Development of a CMOS-Compatible Carbon Nanotube Array Transfer Method. Micromachines, 2021, 12, 95.	1.4	6
13	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	5.8	104
14	Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chemical Engineering Journal, 2021, 412, 128562.	6.6	27
15	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 2021, 12, 3146.	5 . 8	20
16	Cold plasma treatment of catalytic materials: a review. Journal Physics D: Applied Physics, 2021, 54, 333001.	1.3	50
17	Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources, 2021, 494, 229779.	4.0	37
18	Improving oxygen vacancies by cobalt doping in MoO ₂ nanorods for efficient electrocatalytic hydrogen evolution reaction. Nano Select, 2021, 2, 2148-2158.	1.9	9

#	Article	IF	Citations
19	Solar-driven hydrogen generation coupled with urea electrolysis by an oxygen vacancy-rich catalyst. Chemical Engineering Journal, 2021, 414, 128753.	6.6	32
20	Mechanistic Investigation of Electrostatic Fieldâ€Enhanced Water Evaporation. Advanced Science, 2021, 8, e2100875.	5.6	21
21	Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines, 2021, 12, 907.	1.4	55
22	Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nature Communications, 2021, 12, 5087.	5.8	31
23	In Situ Growth and Activation of Ag/Ag ₂ S Nanowire Clusters by H ₂ S Plasma Treatment for Promoted Electrocatalytic CO ₂ Reduction. Advanced Sustainable Systems, 2021, 5, 2100256.	2.7	7
24	Electroreforming of Biomass for Value-Added Products. Micromachines, 2021, 12, 1405.	1.4	7
25	All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. Journal of Power Sources, 2020, 450, 227653.	4.0	108
26	Rambutanâ€ike hollow carbon spheres decorated with vacancyâ€rich nickel oxide for energy conversion and storage. , 2020, 2, 122-130.		68
27	Solarâ€Driven Alkaline Water Electrolysis with Multifunctional Catalysts. Advanced Functional Materials, 2020, 30, 2002138.	7.8	41
28	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	2.7	36
29	Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. Journal of Power Sources, 2020, 453, 227846.	4.0	22
30	Rational design of stable sulfur vacancies in molybdenum disulfide for hydrogen evolution. Journal of Catalysis, 2020, 382, 320-328.	3.1	26
31	Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904010.	10.2	165
32	Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. Journal of Power Sources, 2020, 456, 227998.	4.0	23
33	Vertical Silver@Silver Chloride Core–Shell Nanowire Array for Carbon Dioxide Electroreduction. ACS Applied Energy Materials, 2019, 2, 6163-6169.	2.5	20
34	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
35	Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy, 2019, 204, 34-48.	0.8	39
36	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	11.1	470

#	Article	IF	Citations
37	Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied Materials & Deformance.	4.0	25
38	Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. Nanoscale Advances, 2019, 1, 4783-4789.	2.2	11
39	Novel C fibers@MoS2 nanoplates core-shell composite for efficient solar-driven photocatalytic degradation of Cr(VI) and RhB. Journal of Alloys and Compounds, 2018, 753, 378-387.	2.8	12
40	Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 2017, 8, 15113.	5.8	555
41	Rapid Flame Synthesis of Atomically Thin MoO ₃ down to Monolayer Thickness for Effective Hole Doping of WSe ₂ . Nano Letters, 2017, 17, 3854-3861.	4.5	120
42	Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media. ACS Energy Letters, 2017, 2, 1939-1946.	8.8	61
43	Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing. Applied Physics Letters, 2016, 109, 133103.	1.5	7
44	High-Performance Ultrathin BiVO ₄ Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters, 2016, 1, 68-75.	8.8	66
45	One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632.	8.8	122
46	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	5.2	101
47	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	6.6	244
48	Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 2016, 15, 48-53.	13.3	2,021
49	Enhancing Catalytic CO Oxidation over Co ₃ O ₄ Nanowires by Substituting Co ²⁺ with Cu ²⁺ . ACS Catalysis, 2015, 5, 4485-4491.	5.5	183
50	Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nature Communications, 2015, 6, 7381.	5.8	331
51	A binder-free CNT network–MoS ₂ composite as a high performance anode material in lithium ion batteries. Chemical Communications, 2014, 50, 3338-3340.	2.2	111
52	A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. Journal of Materials Chemistry C, 2014, 2, 1650.	2.7	72
53	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	5.2	229
54	Core–shell CNT–Ni–Si nanowires as a high performance anode material for lithium ion batteries. Carbon, 2013, 63, 54-60.	5.4	41

#	Article	IF	Citations
55	Spin-Orbit Splitting in Single-Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Revealed by Triply Resonant Raman Scattering. Physical Review Letters, 2013, 111, 126801.	ed2.9	137
56	Carbon-nanotube-based RF components with multiple applications. , 2013, , .		1
57	The influence of titanium nitride barrier layer on the properties of CNT bundles. , 2013, , .		0
58	Identifying the mechanisms of p-to-n conversion in unipolar graphene field-effect transistors. Nanotechnology, 2013, 24, 195202.	1.3	8
59	Complementary Logic Gate Arrays Based on Carbon Nanotube Network Transistors. Small, 2013, 9, 813-819.	5.2	25
60	Carbon nanotube bumps for the flip chip packaging system. Nanoscale Research Letters, 2012, 7, 105.	3.1	29
61	Fabrication and characterization of carbon nanotube intermolecular p–n junctions. Solid-State Electronics, 2012, 77, 46-50.	0.8	3
62	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	5.2	1,346
63	Optical Identification of Single―and Few‣ayer MoS ₂ Sheets. Small, 2012, 8, 682-686.	5.2	290
64	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	7.3	3,103
65	From Bulk to Monolayer MoS ₂ : Evolution of Raman Scattering. Advanced Functional Materials, 2012, 22, 1385-1390.	7.8	3,354
66	Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.	11.1	183
67	Electrical transport in carbon nanotube intermolecular p-n junctions. , 2011, , .		1
68	Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors. ACS Nano, 2011, 5, 3198-3203.	7.3	60
69	Family-Dependent Rectification Characteristics in Ultra-Short Graphene Nanoribbon ⟨i⟩p⟨ i⟩–⟨i⟩n⟨ i⟩ Junctions. Journal of Physical Chemistry C, 2011, 115, 8547-8554.	1.5	28
70	Negative rectification and negative differential resistance in nanoscale single-walled carbon nanotube p-n junctions. Theoretical Chemistry Accounts, 2011, 130, 353-359.	0.5	10
71	Chemical Reaction Between Ag Nanoparticles and TCNQ Microparticles in Aqueous Solution. Small, 2011, 7, 1242-1246.	5.2	92
72	Selfâ€Aligned Subâ€10â€nm Nanogap Electrode Array for Largeâ€Scale Integration. Small, 2011, 7, 2195-2200.	5.2	7

#	Article	IF	Citations
73	Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications. International Journal of Microwave and Wireless Technologies, 2010, 2, 463-469.	1.5	10
74	Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Applied Physics Letters, 2010, 96, 043501.	1.5	17
75	Carbon Nanotube-Gated Carbon Nanotube Field-Effect Transistors. Nanoscience and Nanotechnology Letters, 2010, 2, 21-25.	0.4	1
76	Carbon nanotube field-effect transistors functionalized with self-assembly gold nanocrystals. Nanotechnology, 2010, 21, 095202.	1.3	3
77	Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS ₂ Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13840-13847.	6.6	218
78	Postchemistry of Organic Particles: When TTF Microparticles Meet TCNQ Microstructures in Aqueous Solution. Journal of the American Chemical Society, 2010, 132, 6926-6928.	6.6	125
79	Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects. IEEE Transactions on Electron Devices, 2009, 56, 1799-1821.	1.6	390
80	Tunable ambipolar Coulomb blockade characteristics in carbon nanotubes-gated carbon nanotube field-effect transistors. Applied Physics Letters, 2009, 94, 022101.	1.5	7
81	Nanoscale Contacts between Carbon Nanotubes and Metallic Pads. ACS Nano, 2009, 3, 4117-4121.	7.3	13
82	Theoretical study of the performance for short channel carbon nanotube transistors with asymmetric contacts. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6940-6943.	0.9	3
83	Unique Carbon-Nanotube Field-Effect Transistors with Asymmetric Source and Drain Contacts. Nano Letters, 2008, 8, 64-68.	4.5	33
84	Global and local charge trapping in carbon nanotube field-effect transistors. Nanotechnology, 2008, 19, 175203.	1.3	9
85	Synthesis and Characterization of Highly Twisted and Bulky Tetraoctyloxybiphenyl-Containing Polyfluorene Copolymers: Toward Efficient Blue Polymer Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3810-3814.	0.9	3
86	Current instability of carbon nanotube field effect transistors. Nanotechnology, 2007, 18, 424035.	1.3	11
87	Charge-Trapping Effects Caused by Ammonia in Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 335-338.	0.9	4
88	CHARGE STORAGE IN CARBON NANOTUBE FIELD-EFFECT TRANSISTORS. International Journal of Nanoscience, 2006, 05, 553-557.	0.4	2
89	Interpretation of Coulomb oscillations in carbon-nanotube-based field-effect transistors. Physical Review B, 2006, 73, .	1.1	6
90	Carbon-nanotube-based single-electron/hole transistors. Applied Physics Letters, 2006, 88, 013508.	1.5	23

#	Article	IF	CITATIONS
91	Influence of Triton X-100 on the characteristics of carbon nanotube field-effect transistors. Nanotechnology, 2006, 17, 668-673.	1.3	20