

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5734179/publications.pdf Version: 2024-02-01

HONCL

#	Article	IF	CITATIONS
1	From Bulk to Monolayer MoS ₂ : Evolution of Raman Scattering. Advanced Functional Materials, 2012, 22, 1385-1390.	7.8	3,354
2	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	7.3	3,103
3	Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 2016, 15, 48-53.	13.3	2,021
4	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	5.2	1,346
5	Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 2017, 8, 15113.	5.8	555
6	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	11.1	470
7	Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects. IEEE Transactions on Electron Devices, 2009, 56, 1799-1821.	1.6	390
8	Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nature Communications, 2015, 6, 7381.	5.8	331
9	Optical Identification of Single―and Few‣ayer MoS ₂ Sheets. Small, 2012, 8, 682-686.	5.2	290
10	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	6.6	244
11	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	5.2	229
12	Mixed Low-Dimensional Nanomaterial: 2D Ultranarrow MoS ₂ Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13840-13847.	6.6	218
13	Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.	11.1	183
14	Enhancing Catalytic CO Oxidation over Co ₃ O ₄ Nanowires by Substituting Co ²⁺ with Cu ²⁺ . ACS Catalysis, 2015, 5, 4485-4491.	5.5	183
15	Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904010.	10.2	165
16	Spin-Orbit Splitting in Single-Layer <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Reveal by Triply Resonant Raman Scattering. Physical Review Letters, 2013, 111, 126801.	ed2.9	137
17	Postchemistry of Organic Particles: When TTF Microparticles Meet TCNQ Microstructures in Aqueous Solution. Journal of the American Chemical Society, 2010, 132, 6926-6928.	6.6	125
18	One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1, 624-632.	8.8	122

#	Article	IF	CITATIONS
19	Rapid Flame Synthesis of Atomically Thin MoO ₃ down to Monolayer Thickness for Effective Hole Doping of WSe ₂ . Nano Letters, 2017, 17, 3854-3861.	4.5	120
20	A binder-free CNT network–MoS ₂ composite as a high performance anode material in lithium ion batteries. Chemical Communications, 2014, 50, 3338-3340.	2.2	111
21	All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte. Journal of Power Sources, 2020, 450, 227653.	4.0	108
22	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	5.8	104
23	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	5.2	101
24	Chemical Reaction Between Ag Nanoparticles and TCNQ Microparticles in Aqueous Solution. Small, 2011, 7, 1242-1246.	5.2	92
25	A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. Journal of Materials Chemistry C, 2014, 2, 1650.	2.7	72
26	Rambutanâ€like hollow carbon spheres decorated with vacancyâ€rich nickel oxide for energy conversion and storage. , 2020, 2, 122-130.		68
27	High-Performance Ultrathin BiVO ₄ Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters, 2016, 1, 68-75.	8.8	66
28	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
29	Stabilizing Silicon Photocathodes by Solution-Deposited Ni–Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media. ACS Energy Letters, 2017, 2, 1939-1946.	8.8	61
30	Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors. ACS Nano, 2011, 5, 3198-3203.	7.3	60
31	Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines, 2021, 12, 907.	1.4	55
32	Cold plasma treatment of catalytic materials: a review. Journal Physics D: Applied Physics, 2021, 54, 333001.	1.3	50
33	Switchable Surface Coating for Bifunctional Passive Radiative Cooling and Solar Heating. Advanced Functional Materials, 2022, 32, .	7.8	47
34	Core–shell CNT–Ni–Si nanowires as a high performance anode material for lithium ion batteries. Carbon, 2013, 63, 54-60.	5.4	41
35	Solarâ€Ðriven Alkaline Water Electrolysis with Multifunctional Catalysts. Advanced Functional Materials, 2020, 30, 2002138.	7.8	41
36	Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy, 2019, 204, 34-48.	0.8	39

#	Article	IF	CITATIONS
37	Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources, 2021, 494, 229779.	4.0	37
38	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	2.7	36
39	Unique Carbon-Nanotube Field-Effect Transistors with Asymmetric Source and Drain Contacts. Nano Letters, 2008, 8, 64-68.	4.5	33
40	Solar-driven hydrogen generation coupled with urea electrolysis by an oxygen vacancy-rich catalyst. Chemical Engineering Journal, 2021, 414, 128753.	6.6	32
41	Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nature Communications, 2021, 12, 5087.	5.8	31
42	Carbon nanotube bumps for the flip chip packaging system. Nanoscale Research Letters, 2012, 7, 105.	3.1	29
43	Family-Dependent Rectification Characteristics in Ultra-Short Graphene Nanoribbon <i>p</i> – <i>n</i> Junctions. Journal of Physical Chemistry C, 2011, 115, 8547-8554.	1.5	28
44	Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chemical Engineering Journal, 2021, 412, 128562.	6.6	27
45	Rational design of stable sulfur vacancies in molybdenum disulfide for hydrogen evolution. Journal of Catalysis, 2020, 382, 320-328.	3.1	26
46	Complementary Logic Gate Arrays Based on Carbon Nanotube Network Transistors. Small, 2013, 9, 813-819.	5.2	25
47	Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied Materials & Interfaces, 2019, 11, 46902-46911.	4.0	25
48	Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH ₂ . Inorganic Chemistry Frontiers, 2022, 9, 3874-3884.	3.0	24
49	Carbon-nanotube-based single-electron/hole transistors. Applied Physics Letters, 2006, 88, 013508.	1.5	23
50	Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. Journal of Power Sources, 2020, 456, 227998.	4.0	23
51	Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. Journal of Power Sources, 2020, 453, 227846.	4.0	22
52	Mechanistic Investigation of Electrostatic Fieldâ€Enhanced Water Evaporation. Advanced Science, 2021, 8, e2100875.	5.6	21
53	Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. Journal of Colloid and Interface Science, 2022, 606, 793-799.	5.0	21
54	Photovoltaicâ€powered supercapacitors for driving overall water splitting: A dualâ€modulated 3D		21

architecture., 2022, 4, 1262-1273.

#	Article	IF	CITATIONS
55	Influence of Triton X-100 on the characteristics of carbon nanotube field-effect transistors. Nanotechnology, 2006, 17, 668-673.	1.3	20
56	Vertical Silver@Silver Chloride Core–Shell Nanowire Array for Carbon Dioxide Electroreduction. ACS Applied Energy Materials, 2019, 2, 6163-6169.	2.5	20
57	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 2021, 12, 3146.	5.8	20
58	One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with encapsulated cobalt nanoparticles for oxygen reduction. Journal of Catalysis, 2021, 394, 366-375.	3.1	19
59	Sub-ambient radiative cooling under tropical climate using highly reflective polymeric coating. Solar Energy Materials and Solar Cells, 2022, 240, 111723.	3.0	18
60	Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Applied Physics Letters, 2010, 96, 043501.	1.5	17
61	Nanoscale Contacts between Carbon Nanotubes and Metallic Pads. ACS Nano, 2009, 3, 4117-4121.	7.3	13
62	Novel C fibers@MoS2 nanoplates core-shell composite for efficient solar-driven photocatalytic degradation of Cr(VI) and RhB. Journal of Alloys and Compounds, 2018, 753, 378-387.	2.8	12
63	Current instability of carbon nanotube field effect transistors. Nanotechnology, 2007, 18, 424035.	1.3	11
64	Surface group-modified MXene nano-flake doping of monolayer tungsten disulfides. Nanoscale Advances, 2019, 1, 4783-4789.	2.2	11
65	Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications. International Journal of Microwave and Wireless Technologies, 2010, 2, 463-469.	1.5	10
66	Negative rectification and negative differential resistance in nanoscale single-walled carbon nanotube p-n junctions. Theoretical Chemistry Accounts, 2011, 130, 353-359.	0.5	10
67	Two-Dimensional Palladium Phosphoronitride for Oxygen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 12156-12167.	4.0	10
68	Global and local charge trapping in carbon nanotube field-effect transistors. Nanotechnology, 2008, 19, 175203.	1.3	9
69	Improving oxygen vacancies by cobalt doping in MoO ₂ nanorods for efficient electrocatalytic hydrogen evolution reaction. Nano Select, 2021, 2, 2148-2158.	1.9	9
70	Identifying the mechanisms of p-to-n conversion in unipolar graphene field-effect transistors. Nanotechnology, 2013, 24, 195202.	1.3	8
71	Tunable ambipolar Coulomb blockade characteristics in carbon nanotubes-gated carbon nanotube field-effect transistors. Applied Physics Letters, 2009, 94, 022101.	1.5	7
72	Selfâ€Aligned Subâ€10â€nm Nanogap Electrode Array for Largeâ€Scale Integration. Small, 2011, 7, 2195-2200.	5.2	7

#	Article	IF	CITATIONS
73	Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing. Applied Physics Letters, 2016, 109, 133103.	1.5	7
74	In Situ Growth and Activation of Ag/Ag ₂ S Nanowire Clusters by H ₂ S Plasma Treatment for Promoted Electrocatalytic CO ₂ Reduction. Advanced Sustainable Systems, 2021, 5, 2100256.	2.7	7
75	Electroreforming of Biomass for Value-Added Products. Micromachines, 2021, 12, 1405.	1.4	7
76	Interpretation of Coulomb oscillations in carbon-nanotube-based field-effect transistors. Physical Review B, 2006, 73, .	1.1	6
77	Development of a CMOS-Compatible Carbon Nanotube Array Transfer Method. Micromachines, 2021, 12, 95.	1.4	6
78	The criteria to achieving sub-ambient radiative cooling and its limits in tropical daytime. Building and Environment, 2022, 221, 109281.	3.0	6
79	Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 4970-4980.	3.2	5
80	Charge-Trapping Effects Caused by Ammonia in Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 335-338.	0.9	4
81	Synthesis and Characterization of Highly Twisted and Bulky Tetraoctyloxybiphenyl-Containing Polyfluorene Copolymers: Toward Efficient Blue Polymer Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3810-3814.	0.9	3
82	Theoretical study of the performance for short channel carbon nanotube transistors with asymmetric contacts. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6940-6943.	0.9	3
83	Carbon nanotube field-effect transistors functionalized with self-assembly gold nanocrystals. Nanotechnology, 2010, 21, 095202.	1.3	3
84	Fabrication and characterization of carbon nanotube intermolecular p–n junctions. Solid-State Electronics, 2012, 77, 46-50.	0.8	3
85	CHARGE STORAGE IN CARBON NANOTUBE FIELD-EFFECT TRANSISTORS. International Journal of Nanoscience, 2006, 05, 553-557.	0.4	2
86	Carbon Nanotube-Gated Carbon Nanotube Field-Effect Transistors. Nanoscience and Nanotechnology Letters, 2010, 2, 21-25.	0.4	1
87	Electrical transport in carbon nanotube intermolecular p-n junctions. , 2011, , .		1
88	Carbon-nanotube-based RF components with multiple applications. , 2013, , .		1
89	Low-Power Magnetron Sputtering Deposition of Antimonene Nanofilms for Water Splitting Reaction. Micromachines, 2022, 13, 489.	1.4	1
90	The influence of titanium nitride barrier layer on the properties of CNT bundles. , 2013, , .		0

	H	ong Li	
#	Article	IF	CITATIONS
91	Study of carrier dynamics in strained graphene with giant pseudo-magnetic fields. , 2022, , .		Ο