Andrew Gelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5733941/publications.pdf

Version: 2024-02-01

233 papers

62,711 citations

62 h-index 205

g-index

261 all docs

261 docs citations

times ranked

261

67525 citing authors

#	Article	IF	CITATIONS
1	"Two Truths and a Lie―as a Class-Participation Activity. American Statistician, 2023, 77, 97-101.	0.9	2
2	Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful. Bayesian Analysis, 2022, 17, .	1.6	12
3	A Proposal for Informative Default Priors Scaled by the Standard Error of Estimates. American Statistician, 2022, 76, 1-9.	0.9	7
4	A fast regression via SVD and marginalization. Computational Statistics, 2022, 37, 701-720.	0.8	2
5	Mismatch between scientific theories and statistical models. Behavioral and Brain Sciences, 2022, 45, e15.	0.4	1
6	Beyond Vaccination Rates: A Synthetic Random Proxy Metric of Total SARS-CoV-2 Immunity Seroprevalence in the Community. Epidemiology, 2022, 33, 457-464.	1.2	5
7	Criticism as asynchronous collaboration: An example from social science research. Stat, 2022, 11, .	0.3	2
8	How Should Scientific Journals Handle â€~Big If True' Submissions?. Chance, 2022, 35, 41-43.	0.1	0
9	Selecting on statistical significance and practical importance is wrong. Journal of Information Technology, 2022, 37, 312-315.	2.5	4
10	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134.	0.9	0
10		0.9	0
	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS		
11	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38.	4.7	147
11 12	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38. Bayesian statistics and modelling. Nature Reviews Methods Primers, 2021, 1, . Social penumbras predict political attitudes. Proceedings of the National Academy of Sciences of the	4.7	147 419
11 12 13	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38. Bayesian statistics and modelling. Nature Reviews Methods Primers, 2021, 1, . Social penumbras predict political attitudes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Know your population and know your model: Using model-based regression and poststratification to	4.7 11.8 3.3	147 419 5
11 12 13 14	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38. Bayesian statistics and modelling. Nature Reviews Methods Primers, 2021, 1, . Social penumbras predict political attitudes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Know your population and know your model: Using model-based regression and poststratification to generalize findings beyond the observed sample. Psychological Methods, 2021, 26, 547-558. Slamming the sham: A Bayesian model for adaptive adjustment with noisy control data. Statistics in	4.7 11.8 3.3 2.7	147 419 5 13
11 12 13 14	The Development of Bayesian Statistics. Journal of the Indian Institute of Science, 2022, 102, 1131-1134. Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38. Bayesian statistics and modelling. Nature Reviews Methods Primers, 2021, 1, . Social penumbras predict political attitudes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Know your population and know your model: Using model-based regression and poststratification to generalize findings beyond the observed sample Psychological Methods, 2021, 26, 547-558. Slamming the sham: A Bayesian model for adaptive adjustment with noisy control data. Statistics in Medicine, 2021, 40, 3403-3424.	4.7 11.8 3.3 2.7	147 419 5 13

#	Article	IF	CITATIONS
19	Routine Hospital-based SARS-CoV-2 Testing Outperforms State-based Data in Predicting Clinical Burden. Epidemiology, 2021, 32, 792-799.	1.2	5
20	Improving Multilevel Regression and Poststratification with Structured Priors. Bayesian Analysis, 2021, 16, .	1.6	19
21	Failure and Success in Political Polling and Election Forecasting. Statistics and Public Policy (Philadelphia, Pa), 2021, 8, 67-72.	0.7	5
22	How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics, 2021, 59, 1311-1342.	0.5	18
23	Holes in Bayesian statistics [*] . Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 014002.	1.4	9
24	Ethical Requirements of a Research Assistant Who Is Concerned About the Behavior of a Supervisor. Chance, 2021, 34, 21-22.	0.1	0
25	Type M Error Might Explain Weisburd's Paradox. Journal of Quantitative Criminology, 2020, 36, 295-304.	2.0	16
26	A consensus-based transparency checklist. Nature Human Behaviour, 2020, 4, 4-6.	6.2	79
27	Fallout of Lead Over Paris From the 2019 Notreâ€Dame Cathedral Fire. GeoHealth, 2020, 4, e2020GH000279.	1.9	13
28	Bayesian Analysis of Tests with Unknown Specificity and Sensitivity. Journal of the Royal Statistical Society Series C: Applied Statistics, 2020, 69, 1269-1283.	0.5	76
29	Voter Registration Databases and MRP: TowardÂtheÂUse of Large-Scale Databases in PublicÂOpinion Research. Political Analysis, 2020, 28, 507-531.	2.8	10
30	Discussion points for Bayesian inference. Nature Human Behaviour, 2020, 4, 561-563.	6.2	31
31	An Updated Dynamic Bayesian Forecasting Model for the US Presidential Election. , 2020, 2, .		9
32	Bayesian hierarchical spatial models: Implementing the Besag York Molli \tilde{A} © model in stan. Spatial and Spatio-temporal Epidemiology, 2019, 31, 100301.	0.9	92
33	Childhood obesity intervention studies: A narrative review and guide for investigators, authors, editors, reviewers, journalists, and readers to guard against exaggerated effectiveness claims. Obesity Reviews, 2019, 20, 1523-1541.	3.1	25
34	When we make recommendations for scientific practice, we are (at best) acting as social scientists. European Journal of Clinical Investigation, 2019, 49, e13165.	1.7	2
35	Are confidence intervals better termed "uncertainty intervals�. BMJ: British Medical Journal, 2019, 366, l5381.	2.4	50
36	The Experiment is just as Important as the Likelihood in Understanding the Prior: a Cautionary Note on Robust Cognitive Modeling. Computational Brain & Behavior, 2019, 2, 210-217.	0.9	9

#	Article	IF	CITATIONS
37	The Implementation of Randomization Requires Corrected Analyses. Comment on "Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial, Nutrients 2018, 10, 369― Nutrients, 2019, 11, 1126.	1.7	3
38	Objective Randomised Blinded Investigation With Optimal Medical Therapy of Angioplasty in Stable Angina (ORBITA) and coronary stents: A case study in the analysis and reporting of clinical trials. American Heart Journal, 2019, 214, 54-59.	1.2	5
39	Multiple Perspectives on Inference for Two Simple Statistical Scenarios. American Statistician, 2019, 73, 328-339.	0.9	31
40	Visualization in Bayesian Workflow. Journal of the Royal Statistical Society Series A: Statistics in Society, 2019, 182, 389-402.	0.6	543
41	Large-Scale Replication Projects in Contemporary Psychological Research. American Statistician, 2019, 73, 99-105.	0.9	57
42	Comment on "Post-hoc Power Using Observed Estimate of Effect Size is too Noisy to be Useful― Annals of Surgery, 2019, 270, e64.	2.1	10
43	Abandon Statistical Significance. American Statistician, 2019, 73, 235-245.	0.9	555
44	Limitations of "Limitations of Bayesian Leave-one-out Cross-Validation for Model Selection― Computational Brain & Behavior, 2019, 2, 22-27.	0.9	53
45	Don't Calculate Post-hoc Power Using Observed Estimate of Effect Size. Annals of Surgery, 2019, 269, e9-e10.	2.1	59
46	R-squared for Bayesian Regression Models. American Statistician, 2019, 73, 307-309.	0.9	440
47	R-squared for Bayesian Regression Models. American Statistician, 2019, 73, 307-309. Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456.	0.9	642
	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of		
47	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456. The Millennium Villages Project: a retrospective, observational, endline evaluation. The Lancet Global	1.8	642
47	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456. The Millennium Villages Project: a retrospective, observational, endline evaluation. The Lancet Global Health, 2018, 6, e500-e513. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings	1.8 2.9	642 35
48	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456. The Millennium Villages Project: a retrospective, observational, endline evaluation. The Lancet Global Health, 2018, 6, e500-e513. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5211-5216. Benefits and limitations of randomized controlled trials: A commentary on Deaton and Cartwright.	1.8 2.9 3.3	642 35 290
47 48 49 50	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456. The Millennium Villages Project: a retrospective, observational, endline evaluation. The Lancet Global Health, 2018, 6, e500-e513. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5211-5216. Benefits and limitations of randomized controlled trials: A commentary on Deaton and Cartwright. Social Science and Medicine, 2018, 210, 48-49. Disentangling Bias and Variance in Election Polls. Journal of the American Statistical Association,	1.8 2.9 3.3	642 35 290 8
47 48 49 50	Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. Journal of Business and Economic Statistics, 2019, 37, 447-456. The Millennium Villages Project: a retrospective, observational, endline evaluation. The Lancet Global Health, 2018, 6, e500-e513. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5211-5216. Benefits and limitations of randomized controlled trials: A commentary on Deaton and Cartwright. Social Science and Medicine, 2018, 210, 48-49. Disentangling Bias and Variance in Election Polls. Journal of the American Statistical Association, 2018, 113, 607-614. The Failure of Null Hypothesis Significance Testing When Studying Incremental Changes, and What to	1.8 2.9 3.3 1.8	642 35 290 8

#	Article	IF	Citations
55	The statistical significance filter leads to overoptimistic expectations of replicability. Journal of Memory and Language, 2018, 103, 151-175.	1.1	106
56	Bayesian inference under cluster sampling with probability proportional to size. Statistics in Medicine, 2018, 37, 3849-3868.	0.8	18
57	Using Stacking to Average Bayesian Predictive Distributions (with Discussion). Bayesian Analysis, 2018, 13, .	1.6	304
58	Don't characterize replications as successes or failures. Behavioral and Brain Sciences, 2018, 41, e128.	0.4	10
59	Do Researchers Anchor Their Beliefs on the Outcome of an Initial Study?. Experimental Psychology, 2018, 65, 158-169.	0.3	3
60	The statistical crisis in science: how is it relevant to clinical neuropsychology?. Clinical Neuropsychologist, 2017, 31, 1000-1014.	1.5	31
61	Ethics and Statistics: Honesty and Transparency Are Not Enough. Chance, 2017, 30, 37-39.	0.1	20
62	Measurement error and the replication crisis. Science, 2017, 355, 584-585.	6.0	406
63	Some Natural Solutions to the <i>p</i> -Value Communication Problemâ€"and Why They Won't Work. Journal of the American Statistical Association, 2017, 112, 899-901.	1.8	45
64	A Bayesian bird's eye view of â€~Replications of important results in social psychology'. Royal Society Open Science, 2017, 4, 160426.	1.1	28
65	The 2008 Election: A Preregistered Replication Analysis. Statistics and Public Policy (Philadelphia, Pa), 2017, 4, 1-8.	0.7	6
66	Beyond Subjective and Objective in Statistics. Journal of the Royal Statistical Society Series A: Statistics in Society, 2017, 180, 967-1033.	0.6	135
67	Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 2017, 27, 1413-1432.	0.8	2,776
68	19 Things We Learned from the 2016 Election. Statistics and Public Policy (Philadelphia, Pa), 2017, 4, 1-10.	0.7	15
69	Comment: Consensus Monte Carlo using expectation propagation. Brazilian Journal of Probability and Statistics, 2017, 31, .	0.1	0
70	Graphical Visualization of Polling Results. , 2017, , .		1
71	The Prior Can Often Only Be Understood in the Context of the Likelihood. Entropy, 2017, 19, 555.	1.1	282
72	Rejoinder: How Special was 2016?. Statistics and Public Policy (Philadelphia, Pa), 2017, 4, 1-3.	0.7	36

#	Article	IF	Citations
73	<i>Stan</i> : A Probabilistic Programming Language. Journal of Statistical Software, 2017, 76, .	1.8	4,155
74	Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science, 2016, 11, 702-712.	5.2	668
75	Questionable association between front boarding and air rage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7348-E7348.	3.3	4
76	The Mythical Swing Voter. Quarterly Journal of Political Science, 2016, 11, 103-130.	0.7	67
77	Age-aggregation bias in mortality trends. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E816-7.	3.3	50
78	Political attitudes in social environments. Behavioral and Brain Sciences, 2015, 38, e144.	0.4	24
79	Working Through Some Issues. Significance, 2015, 12, 33-35.	0.3	20
80	Simulation-efficient shortest probability intervals. Statistics and Computing, 2015, 25, 809-819.	0.8	18
81	Incorporating the sampling design in weighting adjustments for panel attrition. Statistics in Medicine, 2015, 34, 3637-3647.	0.8	25
82	Evidence on the deleterious impact of sustained use of polynomial regression on causal inference. Research and Politics, 2015, 2, 205316801556983.	0.7	24
83	The Connection Between Varying Treatment Effects and the Crisis of Unreplicable Research. Journal of Management, 2015, 41, 632-643.	6.3	84
84	Forecasting elections with non-representative polls. International Journal of Forecasting, 2015, 31, 980-991.	3.9	242
85	Difficulty of selecting among multilevel models using predictive accuracy. Statistics and Its Interface, 2015, 8, 153-160.	0.2	8
86	Revised evidence for statistical standards. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1933.	3.3	20
87	When Do Stories Work? Evidence and Illustration in the Social Sciences. Sociological Methods and Research, 2014, 43, 547-570.	4.3	33
88	Beyond Power Calculations. Perspectives on Psychological Science, 2014, 9, 641-651.	5 . 2	922
89	Discussion: Difficulties in making inferences about scientific truth from distributions of published p-values. Biostatistics, 2014, 15, 18-23.	0.9	29
90	The Twentieth-Century Reversal: How Did the Republican States Switch to the Democrats and Vice Versa?. Statistics and Public Policy (Philadelphia, Pa), 2014, 1 , 1 -5.	0.7	3

#	Article	IF	CITATIONS
91	Multiple Imputation for Continuous and Categorical Data: Comparing Joint Multivariate Normal and Conditional Approaches. Political Analysis, 2014, 22, 497-519.	2.8	71
92	Understanding predictive information criteria for Bayesian models. Statistics and Computing, 2014, 24, 997-1016.	0.8	1,337
93	The Statistical Crisis in Science. American Scientist, 2014, 102, 460.	0.1	570
94	"Not Only Defended But Also Appliedâ€. The Perceived Absurdity of Bayesian Inference. American Statistician, 2013, 67, 1-5.	0.9	42
95	Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 2013, 66, 8-38.	1.0	441
96	Rejoinder to discussion of â€~Philosophy and the practice of Bayesian statistics'. British Journal of Mathematical and Statistical Psychology, 2013, 66, 76-80.	1.0	2
97	Rejoinder: The Anti-Bayesian Moment and Its Passing. American Statistician, 2013, 67, 16-17.	0.9	2
98	Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups. American Journal of Political Science, 2013, 57, 762-776.	2.9	120
99	Preregistration of Studies and Mock Reports. Political Analysis, 2013, 21, 40-41.	2.8	14
100	Commentary. Epidemiology, 2013, 24, 69-72.	1.2	176
101	Red State/Blue State Divisions in the 2012 Presidential Election. Forum (Germany), 2013, 10, .	0.4	2
102	Estimating Partisan Bias of the Electoral College Under Proposed Changes in Elector Apportionment. Statistics, Politics, and Policy, 2013, 4, 1-13.	0.2	6
103	Charles Murray's Coming Apart and the measurement of social and political divisions. Statistics, Politics, and Policy, 2013, 4, .	0.2	0
104	Does quantum uncertainty have a place in everyday applied statistics?. Behavioral and Brain Sciences, 2013, 36, 285-285.	0.4	6
105	A Practical Guide to Measuring Social Structure Using Indirectly Observed Network Data. Journal of Statistical Theory and Practice, 2013, 7, 120-132.	0.3	59
106	Why We (Usually) Don't Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness, 2012, 5, 189-211.	0.9	834
107	Does the US Media Have a Liberal Bias?. Perspectives on Politics, 2012, 10, 775-779.	0.2	1
108	Ethics and Statistics: Statisticians: When We Teach, We Don't Practice What We Preach. Chance, 2012, 25, 47-48.	0.1	4

#	Article	IF	CITATIONS
109	Going beyond the book: towards critical reading in statistics teaching. Teaching Statistics, 2012, 34, 82-86.	0.6	6
110	Why Tables Are Really Much Better Than Graphs. Journal of Computational and Graphical Statistics, 2011, 20, 3-7.	0.9	46
111	Statistical graphics. Significance, 2011, 8, 135-137.	0.3	0
112	What Do We Know at 7 PM on Election Night?. Mathematics Magazine, 2010, 83, 258-266.	0.1	0
113	Bridges between deterministic and probabilistic models for binary data. Statistical Methodology, 2010, 7, 187-209.	0.5	7
114	Economic Disparities and Life Satisfaction in European Regions. Social Indicators Research, 2010, 96, 339-361.	1.4	110
115	Public Opinion on Health Care Reform. Forum (Germany), 2010, 8, .	0.4	25
116	Protecting Minorities in Large Binary Elections: A Test of Storable Votes Using Field Data. B E Journal of Economic Analysis and Policy, 2010, 10 , .	0.5	1
117	Bayesian Combination of State Polls and Election Forecasts. Political Analysis, 2010, 18, 337-348.	2.8	32
118	Correlations and Multiple Comparisons in Functional Imaging: A Statistical Perspective (Commentary) Tj ETQq0	O O raBT li	Overlock 10 T
		5.2	41 41
119	Comments on †The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072.	0.8	0
119	Comments on â€~The BUGS project: Evolution, critique and future directions'. Statistics in Medicine,	0.2	11
	Comments on †The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. American	0.8	0
120	Comments on †The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. American Statistician, 2009, 63, 1-8.	0.8	0 109
120	Comments on †The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. American Statistician, 2009, 63, 1-8. Of Beauty, Sex and Power. American Scientist, 2009, 97, 310.	0.8	0 109
120 121 122	Comments on †The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. American Statistician, 2009, 63, 1-8. Of Beauty, Sex and Power. American Scientist, 2009, 97, 310. Bayesian Hierarchical Classes Analysis. Psychometrika, 2008, 73, 39-64. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine, 2008, 27,	0.8 0.9 0.1	0 109 113 10
120 121 122 123	Comments on â€The BUGS project: Evolution, critique and future directions'. Statistics in Medicine, 2009, 28, 3070-3072. Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. American Statistician, 2009, 63, 1-8. Of Beauty, Sex and Power. American Scientist, 2009, 97, 310. Bayesian Hierarchical Classes Analysis. Psychometrika, 2008, 73, 39-64. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine, 2008, 27, 2865-2873. A simple scheme to improve the efficiency of referenda. Journal of Public Economics, 2008, 92,	0.8 0.9 0.1 1.2	0 109 113 10

#	Article	IF	CITATIONS
127	Using Redundant Parameterizations to Fit Hierarchical Models. Journal of Computational and Graphical Statistics, 2008, 17, 95-122.	0.9	61
128	A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics, 2008, 2, .	0.5	1,335
129	Visualization in Bayesian Data Analysis. , 2008, , 709-724.		10
130	Weighted Classical Variogram Estimation for Data With Clustering. Technometrics, 2007, 49, 184-194.	1.3	15
131	Rich State, Poor State, Red State, Blue State: What's the Matter with Connecticut?. Quarterly Journal of Political Science, 2007, 2, 345-367.	0.7	159
132	Struggles with Survey Weighting and Regression Modeling. Statistical Science, 2007, 22, .	1.6	340
133	An Analysis of the New York City Police Department's "Stop-and-Frisk―Policy in the Context of Claims of Racial Bias. Journal of the American Statistical Association, 2007, 102, 813-823.	1.8	570
134	Evaluation of multilevel decision trees. Journal of Statistical Planning and Inference, 2007, 137, 1151-1160.	0.4	1
135	Letter to the editors regarding some papers of Dr. Satoshi Kanazawa. Journal of Theoretical Biology, 2007, 245, 597-599.	0.8	24
136	Manipulating and summarizing posterior simulations using random variable objects. Statistics and Computing, 2007, 17, 235-244.	0.8	17
137	Comment: Bayesian Checking of the Second Levels of Hierarchical Models. Statistical Science, 2007, 22,	1.6	35
138	The Boxer, the Wrestler, and the Coin Flip. American Statistician, 2006, 60, 146-150.	0.9	23
139	Validation of Software for Bayesian Models Using Posterior Quantiles. Journal of Computational and Graphical Statistics, 2006, 15, 675-692.	0.9	181
140	How Many People Do You Know in Prison?. Journal of the American Statistical Association, 2006, 101, 409-423.	1.8	154
141	An experimental study of storable votes. Games and Economic Behavior, 2006, 57, 123-154.	0.4	51
142	Prior distributions for variance parameters in hierarchical models (comment on article by Browne) Tj ETQq0 0 0 0	gBŢ.¦Over	lock 10 Tf 50
143	The Difference Between "Significant―and "Not Significant―is not Itself Statistically Significant. American Statistician, 2006, 60, 328-331.	0.9	813
144	Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models. Technometrics, 2006, 48, 241-251.	1.3	245

#	Article	lF	CITATIONS
145	Perceptual Scaling. Wiley Series in Probability and Statistics, 2005, , 343-360.	0.0	2
146	Modeling the Covariance and Correlation Matrix of Repeated Measures. Wiley Series in Probability and Statistics, 2005, , 215-226.	0.0	5
147	An Overview of Methods for Causal Inference from Observational Studies. Wiley Series in Probability and Statistics, 2005, , 1-13.	0.0	7
148	Nonresponse Adjustment in Government Statistical Agencies: Constraints, Inferential Goals, and Robustness Issues. Wiley Series in Probability and Statistics, 2005, , 109-115.	0.0	0
149	Bridging across Changes in Classification Systems. Wiley Series in Probability and Statistics, 2005, , 117-128.	0.0	3
150	Representing the Census Undercount by Multiple Imputation of Households. Wiley Series in Probability and Statistics, 2005, , 129-140.	0.0	0
151	Statistical Disclosure Techniques Based on Multiple Imputation. Wiley Series in Probability and Statistics, 2005, , 141-152.	0.0	18
152	Designs Producing Balanced Missing Data: Examples from the National Assessment of Educational Progress. Wiley Series in Probability and Statistics, 2005, , 153-162.	0.0	0
153	Propensity Score Estimation with Missing Data. Wiley Series in Probability and Statistics, 2005, , 163-174.	0.0	2
154	Sensitivity to Nonignorability in Frequentist Inference. Wiley Series in Probability and Statistics, 2005, , 175-186.	0.0	0
155	Statistical Modeling and Computation. Wiley Series in Probability and Statistics, 2005, , 187-194.	0.0	0
156	Treatment Effects in Before-After Data. Wiley Series in Probability and Statistics, 2005, , 195-202.	0.0	3
157	Multimodality in Mixture Models and Factor Models. Wiley Series in Probability and Statistics, 2005, , 203-213.	0.0	1
158	Matching in Observational Studies. Wiley Series in Probability and Statistics, 2005, , 15-24.	0.0	5
159	Using EM and Data Augmentation for the Competing Risks Model. Wiley Series in Probability and Statistics, 2005, , 239-251.	0.0	5
160	Mixed Effects Models and the EM Algorithm. Wiley Series in Probability and Statistics, 2005, , 253-264.	0.0	0
161	The Sampling/Importance Resampling Algorithm. Wiley Series in Probability and Statistics, 2005, , 265-276.	0.0	3
162	Whither Applied Bayesian Inference?. Wiley Series in Probability and Statistics, 2005, , 277-284.	0.0	0

#	Article	IF	CITATIONS
163	Record Linkage Using Finite Mixture Models. Wiley Series in Probability and Statistics, 2005, , 309-318.	0.0	6
164	Estimating Causal Effects in Nonexperimental Studies. Wiley Series in Probability and Statistics, 2005, , 25-35.	0.0	1
165	Applying Structural Equation Models with Incomplete Data. Wiley Series in Probability and Statistics, 2005, , 331-342.	0.0	3
166	Medication Cost Sharing and Drug Spending in Medicare. Wiley Series in Probability and Statistics, 2005, , 37-47.	0.0	0
167	A Comparison of Experimental and Observational Data Analyses. Wiley Series in Probability and Statistics, 2005, , 49-60.	0.0	55
168	Causal Inference with Instrumental Variables. Wiley Series in Probability and Statistics, 2005, , 85-96.	0.0	0
169	Principal Stratification. Wiley Series in Probability and Statistics, 2005, , 97-108.	0.0	1
170	Identifying Likely Duplicates by Record Linkage in a Survey of Prostitutes. Wiley Series in Probability and Statistics, 2005, , 319-329.	0.0	1
171	Improved Predictions of Lynx Trappings Using a Biological Model. Wiley Series in Probability and Statistics, 2005, , 297-308.	0.0	4
172	Robit Regression: A Simple Robust Alternative to Logistic and Probit Regression. Wiley Series in Probability and Statistics, 2005, , 227-238.	0.0	59
173	Fixing Broken Experiments Using the Propensity Score. Wiley Series in Probability and Statistics, 2005, , 61-71.	0.0	2
174	The Propensity Score with Continuous Treatments. Wiley Series in Probability and Statistics, 2005, , 73-84.	0.0	475
175	Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data. Biometrics, 2005, 61, 74-85.	0.8	96
176	Rich State, Poor State, Red State, Blue State: What's the Matter with Connecticut?. SSRN Electronic Journal, 2005, , .	0.4	11
177	Analysis of varianceâ€"why it is more important than ever. Annals of Statistics, 2005, 33, 1.	1.4	601
178	Efficient EM-type Algorithms for Fitting Spectral Lines in High-Energy Astrophysics. Wiley Series in Probability and Statistics, 2005, , 285-296.	0.0	2
179	Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation. Political Analysis, 2005, 13, 171-187.	2.8	167
180	Two-Stage Regression and Multilevel Modeling: A Commentary. Political Analysis, 2005, 13, 459-461.	2.8	34

#	Article	IF	Citations
181	A Course on Teaching Statistics at the University Level. American Statistician, 2005, 59, 4-7.	0.9	8
182	Comment: Fuzzy and Bayesian p-Values and u-Values. Statistical Science, 2005, 20, .	1.6	13
183	R2WinBUGS : A Package for Running WinBUGS from <i>R</i> . Journal of Statistical Software, 2005, 12, .	1.8	1,161
184	Exploratory Data Analysis for Complex Models. Journal of Computational and Graphical Statistics, 2004, 13, 755-779.	0.9	145
185	Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls. Political Analysis, 2004, 12, 375-385.	2.8	356
186	Parameterization and Bayesian Modeling. Journal of the American Statistical Association, 2004, 99, 537-545.	1.8	185
187	A Broken System: The Persistent Patterns of Reversals of Death Sentences in the United States. Journal of Empirical Legal Studies, 2004, 1, 209-261.	0.5	33
188	Direct Data Manipulation for Local Decision Analysis as Applied to the Problem of Arsenic in Drinking Water from Tube Wells in Bangladesh. Risk Analysis, 2004, 24, 1597-1612.	1.5	25
189	Bayesian Analysis of Serial Dilution Assays. Biometrics, 2004, 60, 407-417.	0.8	43
190	A Bayesian Formulation of Exploratory Data Analysis and Goodnessâ€ofâ€fit Testing*. International Statistical Review, 2003, 71, 369-382.	1.1	183
191	Regression Modeling and Meta-Analysis for Decision Making. Journal of Business and Economic Statistics, 2003, 21, 213-225.	1.8	20
192	Let's Practice What We Preach. American Statistician, 2002, 56, 121-130.	0.9	182
193	The mathematics and statistics of voting power. Statistical Science, 2002, 17, 420.	1.6	52
194	You Can Load a Die, But You Can't Bias a Coin. American Statistician, 2002, 56, 308-311.	0.9	36
195	Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 2002, 80, 732-7.	1.5	127
196	Poststratification Without Population Level Information on the Poststratifying Variable With Application to Political Polling. Journal of the American Statistical Association, 2001, 96, 1-11.	1.8	19
197	A method for quantifying artefacts in mapping methods illustrated by application to headbanging. Statistics in Medicine, 2000, 19, 2309-2320.	0.8	32
198	Type S error rates for classical and Bayesian single and multiple comparison procedures. Computational Statistics, 2000, 15, 373-390.	0.8	239

#	Article	IF	Citations
199	Bayesian probabilistic extensions of a deterministic classification model. Computational Statistics, 2000, 15, 355-371.	0.8	6
200	Should we take measurements at an intermediate design point?. Biostatistics, 2000, 1, 27-34.	0.9	3
201	All maps of parameter estimates are misleading. , 1999, 18, 3221-3234.		121
202	All maps of parameter estimates are misleading., 1999, 18, 3221.		2
203	Analysis of Local Decisions Using Hierarchical Modeling, Applied to Home Radon Measurement and Remediation. Statistical Science, 1999, 14, .	1.6	31
204	Not Asked and Not Answered: Multiple Imputation for Multiple Surveys. Journal of the American Statistical Association, 1998, 93, 846-857.	1.8	100
205	Markov Chain Monte Carlo in Practice: A Roundtable Discussion. American Statistician, 1998, 52, 93-100.	0.9	251
206	General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 1998, 7, 434-455.	0.9	2,606
207	Estimating the Probability of Events That have Never Occurred: When is Your Vote Decisive?. Journal of the American Statistical Association, 1998, 93, 1-9.	1.8	67
208	Some Class-Participation Demonstrations for Decision Theory and Bayesian Statistics. American Statistician, 1998, 52, 167-174.	0.9	4
209	Student Projects on Statistical Literacy and the Media. American Statistician, 1998, 52, 160-166.	0.9	4
210	Analysis of Nonrandomly Censored Ordered Categorical Longitudinal Data from Analgesic Trials: Comment. Journal of the American Statistical Association, 1997, 92, 1248.	1.8	3
211	Walking to school and traffic exposure in Australian children. Australian and New Zealand Journal of Public Health, 1997, 21, 286-292.	0.8	70
212	Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions. Journal of the American Statistical Association, 1996, 91, 1400-1412.	1.8	291
213	A Review: Preelection Survey Methodology: Details From Eight Polling Organizations, 1988 and 1992. Public Opinion Quarterly, 1995, 59, 98.	0.9	64
214	Method of Moments Using Monte Carlo Simulation. Journal of Computational and Graphical Statistics, 1995, 4, 36-54.	0.9	15
215	Avoiding Model Selection in Bayesian Social Research. Sociological Methodology, 1995, 25, 165.	1.4	107
216	A Unified Method of Evaluating Electoral Systems and Redistricting Plans. American Journal of Political Science, 1994, 38, 514.	2.9	165

#	Article	IF	Citations
217	Enhancing Democracy Through Legislative Redistricting. American Political Science Review, 1994, 88, 541-559.	2.6	181
218	A Probabilistic Model for the Spatial Distribution of Party Support in Multiparty Electorates: Discussion. Journal of the American Statistical Association, 1994, 89, 1198.	1.8	1
219	Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?. British Journal of Political Science, 1993, 23, 409-451.	2.2	674
220	Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 1992, 7, 457.	1.6	11,419
221	A Note on Bivariate Distributions That are Conditionally Normal. American Statistician, 1991, 45, 125-126.	0.9	21
222	Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third. SSRN Electronic Journal, $0, , .$	0.4	3
223	Fitting Multilevel Models When Predictors and Group Effects Correlate. SSRN Electronic Journal, 0, ,	0.4	35
224	Adaptively Scaling the Metropolis Algorithm Using Expected Squared Jumped Distance. SSRN Electronic Journal, 0, , .	0.4	6
225	Bayesian Data Analysis., 0, , .		2,516
226	Bayesian Data Analysis., 0,,.		2,531
227	Bayesian Data Analysis. , 0, , .		4,645
228	A Default Prior Distribution for Logistic and Other Regression Models. SSRN Electronic Journal, 0, , .	0.4	15
229	Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions. , 0, .		52
230	Estimating the Probability of Events That have Never Occurred: When is Your Vote Decisive?., 0, .		55
231	Not Asked and Not Answered: Multiple Imputation for Multiple Surveys. , 0, .		8
232	Income and Vote Choice in the 2000 Mexican Presidential Election. SSRN Electronic Journal, 0, , .	0.4	0
233	Reconciling Evaluations of the Millennium Villages Project. Statistics and Public Policy (Philadelphia,) Tj $$ ETQq $$ 1 $$ 1 $$ 1	0.784314	f rgBT /Overlo