
Qiaoliang Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5732290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
2	Atomic‣ayer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 2009, 19, 3077-3083.	7.8	2,310
3	Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano, 2012, 6, 3677-3694.	7.3	1,749
4	Hydrothermal Dehydration for the "Green―Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009, 21, 2950-2956.	3.2	1,430
5	The chemistry of graphene. Journal of Materials Chemistry, 2010, 20, 2277.	6.7	1,350
6	Broadband graphene polarizer. Nature Photonics, 2011, 5, 411-415.	15.6	961
7	Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 6707-6713.	6.6	951
8	Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Optics Express, 2015, 23, 12823.	1.7	866
9	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
10	Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37, 1856.	1.7	589
11	Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 2007, 170, 79-84.	4.0	564
12	Broadband Nonlinear Photonics in Few‣ayer MXene Ti ₃ C ₂ T _x (T =) Tj E	TQq0,00r 4.4	rgBT /Overloc
13	High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte. Journal of the American Chemical Society, 2011, 133, 8888-8891.	6.6	539
14	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
15	Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011, 5, 9927-9933.	7.3	529
16	Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Optics Express, 2009, 17, 17630.	1.7	512
17	In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557-562.	13.7	506
18	Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10, 28.	5.8	475

2

#	Article	IF	CITATIONS
19	Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96, .	1.5	456
20	Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Applied Physics Letters, 2009, 95, .	1.5	450
21	Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 2010, 20, 782-791.	7.8	434
22	Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.	13.7	413
23	Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4, 297-307.	5.8	408
24	Structure-Directing Role of Graphene in the Synthesis of Metalâ^'Organic Framework Nanowire. Journal of the American Chemical Society, 2010, 132, 14487-14495.	6.6	403
25	Nitrogenâ€Doped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. Advanced Functional Materials, 2015, 25, 5768-5777.	7.8	384
26	Scalable Production of a Few-Layer MoS ₂ /WS ₂ Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano, 2016, 10, 573-580.	7.3	362
27	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite: Synthesis and Optoelectronic Application. ACS Nano, 2016, 10, 3536-3542.	7.3	359
28	Broadband Photodetectors Based on Graphene–Bi ₂ Te ₃ Heterostructure. ACS Nano, 2015, 9, 1886-1894.	7.3	338
29	Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009, 20, 085203.	1.3	323
30	Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr ₂ Solar Cells. Advanced Energy Materials, 2017, 7, 1700946.	10.2	318
31	Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Advanced Materials, 2010, 22, 67-71.	11.1	311
32	A Graphene Oxide–Organic Dye Ionic Complex with DNAâ€5ensing and Opticalâ€Limiting Properties. Angewandte Chemie - International Edition, 2010, 49, 6549-6553.	7.2	304
33	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces, 2017, 9, 12759-12765.	4.0	296
34	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
35	High-Throughput Synthesis of Graphene by Intercalationâ [~] 'Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor. ACS Nano, 2009, 3, 3587-3594.	7.3	263
36	Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001.	1.3	259

#	Article	IF	CITATIONS
37	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	2.2	252
38	Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 2015, 3, 1389-1396.	3.6	240
39	Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8, 6410-6434.	2.8	233
40	Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO ₂ and Its Electrochemical Supercapacitor. Journal of Physical Chemistry C, 2008, 112, 14843-14847.	1.5	231
41	Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Optics Letters, 2010, 35, 3622.	1.7	230
42	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	3.6	228
43	Flexible, Printable Softâ€Xâ€Ray Detectors Based on Allâ€Inorganic Perovskite Quantum Dots. Advanced Materials, 2019, 31, e1901644.	11.1	221
44	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.	5.8	219
45	Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion. Laser Physics Letters, 0, 7, 591-596.	0.6	214
46	Graphene–Bi ₂ Te ₃ Heterostructure as Saturable Absorber for Short Pulse Generation. ACS Photonics, 2015, 2, 832-841.	3.2	208
47	Synthesis and Transfer of Large-Area Monolayer WS ₂ Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano, 2015, 9, 6178-6187.	7.3	200
48	Near-Infrared Photodetectors Based on MoTe ₂ /Graphene Heterostructure with High Responsivity and Flexibility. Small, 2017, 13, 1700268.	5.2	200
49	Solutionâ€Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 864-871.	7.8	187
50	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
51	Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Applied Physics Letters, 2015, 107, .	1.5	168
52	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
53	Seleniumâ€Doped Black Phosphorus for Highâ€Responsivity 2D Photodetectors. Small, 2016, 12, 5000-5007.	5.2	156
54	High Efficiency Mesoscopic Solar Cells Using CsPbI ₃ Perovskite Quantum Dots Enabled by Chemical Interface Engineering. Journal of the American Chemical Society, 2020, 142, 3775-3783.	6.6	156

#	Article	IF	CITATIONS
55	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	1.6	155
56	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
57	Polarized Emission and Optical Waveguide in Crystalline Perylene Diimide Microwires. Advanced Materials, 2010, 22, 3661-3666.	11.1	146
58	Facile Fabrication of Highâ€Density Subâ€1â€nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates. Advanced Functional Materials, 2016, 26, 8137-8145.	7.8	143
59	Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping. Advanced Materials, 2018, 30, e1705792.	11.1	141
60	Vector dissipative solitons in graphene mode locked fiber lasers. Optics Communications, 2010, 283, 3334-3338.	1.0	138
61	High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles. Chemistry of Materials, 2008, 20, 2057-2059.	3.2	136
62	Template-Free Electrochemical Synthesis of Superhydrophilic Polypyrrole Nanofiber Network. Macromolecules, 2008, 41, 7053-7057.	2.2	135
63	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	7.3	134
64	Fabrication of Strongly Fluorescent Quantum Dotâ^'Polymer Composite in Aqueous Solution. Chemistry of Materials, 2007, 19, 3773-3779.	3.2	133
65	Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nature Communications, 2017, 8, 13906.	5.8	132
66	Highâ€Gain Grapheneâ€Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Advanced Materials, 2010, 22, 5265-5270.	11.1	131
67	Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nature Materials, 2020, 19, 964-968.	13.3	129
68	Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3topological insulator particles. Laser Physics Letters, 2014, 11, 055107.	0.6	125
69	Shape Evolution and Magnetic Properties of Cobalt Sulfide. Crystal Growth and Design, 2008, 8, 3745-3749.	1.4	123
70	Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Applied Physics Reviews, 2018, 5, .	5.5	119
71	Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1, 268-287.	3.9	118
72	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	14.4	114

#	Article	IF	CITATIONS
73	Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochemistry Communications, 2007, 9, 1233-1238.	2.3	112
74	Wafer-Scale Fabrication of Two-Dimensional PtS ₂ /PtSe ₂ Heterojunctions for Efficient and Broad band Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 40614-40622.	4.0	110
75	Toward High Throughput Interconvertible Graphane-to-Graphene Growth and Patterning. ACS Nano, 2010, 4, 6146-6152.	7.3	109
76	Graphene as Atomic Template and Structural Scaffold in the Synthesis of Grapheneâ^'Organic Hybrid Wire with Photovoltaic Properties. ACS Nano, 2010, 4, 6180-6186.	7.3	109
77	Controlled Hydrogenation of Graphene Sheets and Nanoribbons. ACS Nano, 2011, 5, 888-896.	7.3	105
78	Preparation and Characterization of a Novel Cocrystal Explosive. Crystal Growth and Design, 2011, 11, 1759-1765.	1.4	102
79	A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7, 20249-20255.	2.8	99
80	Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies. Advanced Materials, 2020, 32, e1908176.	11.1	99
81	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	4.5	98
82	Strain Relaxation of Monolayer WS ₂ on Plastic Substrate. Advanced Functional Materials, 2016, 26, 8707-8714.	7.8	97
83	Solutionâ€Processed Extremely Efficient Multicolor Perovskite Lightâ€Emitting Diodes Utilizing Doped Electron Transport Layer. Advanced Functional Materials, 2017, 27, 1606874.	7.8	96
84	Fieldâ€Induced nâ€Doping of Black Phosphorus for CMOS Compatible 2D Logic Electronics with High Electron Mobility. Advanced Functional Materials, 2017, 27, 1702211.	7.8	95
85	Mechanically-Assisted Electrochemical Production of Graphene Oxide. Chemistry of Materials, 2016, 28, 8429-8438.	3.2	91
86	Perovskite CsPbX ₃ : A Promising Nonlinear Optical Material and Its Applications for Ambient Allâ€Optical Switching with Enhanced Stability. Advanced Optical Materials, 2018, 6, 1800400.	3.6	90
87	Few‣ayer Topological Insulator for Allâ€Optical Signal Processing Using the Nonlinear Kerr Effect. Advanced Optical Materials, 2015, 3, 1769-1778.	3.6	87
88	Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. Journal of the American Chemical Society, 2009, 131, 16832-16837.	6.6	85
89	Supercapacitance of Solid Carbon Nanofibers Made from Ethanol Flames. Journal of Physical Chemistry C, 2008, 112, 3612-3618.	1.5	83
90	Synthesis and Electrical Transport of Novel Channel-StructuredÎ ² -AgVO3. Small, 2007, 3, 1174-1177.	5.2	82

#	Article	IF	CITATIONS
91	Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO ₃ and Polar Dielectric Interfaces. Nano Letters, 2021, 21, 3112-3119.	4.5	79
92	Graphene surface plasmons at the near-infrared optical regime. Scientific Reports, 2014, 4, 6559.	1.6	78
93	Atomically thin lateral p–n junction photodetector with large effective detection area. 2D Materials, 2016, 3, 041001.	2.0	78
94	Band Structure Engineering in 2D Materials for Optoelectronic Applications. Advanced Materials Technologies, 2018, 3, 1800072.	3.0	78
95	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	23.0	78
96	Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. Nanoscale, 2016, 8, 6258-6264.	2.8	76
97	Optically tuned terahertz modulator based on annealed multilayer MoS2. Scientific Reports, 2016, 6, 22899.	1.6	74
98	Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS ₂ Heterostructures. ACS Nano, 2017, 11, 2785-2793.	7.3	74
99	Raman Spectroscopy of Two-Dimensional Bi2TexSe3 â^' x Platelets Produced by Solvothermal Method. Materials, 2015, 8, 5007-5017.	1.3	68
100	Reversible Structural Swell–Shrink and Recoverable Optical Properties in Hybrid Inorganic–Organic Perovskite. ACS Nano, 2016, 10, 7031-7038.	7.3	68
101	Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Advanced Materials, 2016, 28, 3535-3542.	11.1	68
102	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Science and Applications, 2017, 6, e16204-e16204.	7.7	68
103	The Roadmap of Grapheneâ€Based Optical Biochemical Sensors. Advanced Functional Materials, 2017, 27, 1603918.	7.8	68
104	A hydrothermal anvil made of graphene nanobubbles on diamond. Nature Communications, 2013, 4, 1556.	5.8	67
105	Bias-switchable negative and positive photoconductivity in 2D FePS ₃ ultraviolet photodetectors. Nanotechnology, 2018, 29, 244001.	1.3	67
106	Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers. ACS Applied Materials & Interfaces, 2018, 10, 21534-21540.	4.0	67
107	Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. ACS Nano, 2019, 13, 12987-12995.	7.3	67
108	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11, 6086.	5.8	67

#	Article	IF	CITATIONS
109	Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nature Communications, 2017, 8, 613.	5.8	66
110	Actively Tunable Visible Surface Plasmons in Bi ₂ Te ₃ and their Energyâ€Harvesting Applications. Advanced Materials, 2016, 28, 3138-3144.	11.1	65
111	Ultraâ€Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small, 2018, 14, e1802598.	5.2	65
112	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light: Science and Applications, 2020, 9, 137.	7.7	65
113	2D–Materialsâ€Based Quantum Dots: Gateway Towards Next eneration Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
114	Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Small, 2017, 13, 1701881.	5.2	63
115	High‥ield Electrochemical Production of Large‧ized and Thinly Layered NiPS ₃ Flakes for Overall Water Splitting. Small, 2019, 15, e1902427.	5.2	62
116	A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide. Journal of Lightwave Technology, 2016, 34, 4948-4953.	2.7	60
117	High performance photodetector based on 2D CH ₃ NH ₃ PbI ₃ perovskite nanosheets. Journal Physics D: Applied Physics, 2017, 50, 094002.	1.3	60
118	Theoretical analysis of hot electron dynamics in nanorods. Scientific Reports, 2015, 5, 12140.	1.6	59
119	Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	5.8	59
120	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	5.2	58
121	Blocks of molybdenum ditelluride: A high rate anode for sodium-ion battery and full cell prototype study. Nano Energy, 2019, 64, 103951.	8.2	57
122	Electric field induced growth of well aligned carbon nanotubes from ethanol flames. Nanotechnology, 2006, 17, 1016-1021.	1.3	56
123	Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Applied Physics Letters, 2016, 108, .	1.5	56
124	Ultra-broadband Nonlinear Saturable Absorption for Two-dimensional Bi2TexSe3â^'x Nanosheets. Scientific Reports, 2016, 6, 33070.	1.6	55
125	Using the Graphene Moiré Pattern for the Trapping of C ₆₀ and Homoepitaxy of Graphene. ACS Nano, 2012, 6, 944-950.	7.3	54
126	Back-contacted hybrid organic–inorganic perovskite solar cells. Journal of Materials Chemistry C, 2016. 4. 3125-3130.	2.7	54

#	Article	IF	CITATIONS
127	Controlled Growth of Monocrystalline Organo‣ead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie - International Edition, 2017, 56, 12486-12491.	7.2	54
128	High Performance Lithiumâ€lon Batteries Using Layered 2Hâ€MoTe ₂ as Anode. Small, 2020, 16, e2002669.	5.2	54
129	Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nature Communications, 2020, 11, 2646.	5.8	54
130	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015, 3, 744-749.	3.6	52
131	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. Chemistry of Materials, 2015, 27, 3471-3482.	3.2	51
132	Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics, 2022, 4, 578-594.	11.9	51
133	Electrical transport and photovoltaic effects of core–shell CuO/C60nanowire heterostructure. Nanotechnology, 2009, 20, 065203.	1.3	50
134	Graphene-Bi2Te3 Heterostructure as Broadband Saturable Absorber for Ultra-Short Pulse Generation in Er-Doped and Yb-Doped Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 195-199.	1.9	49
135	Ultrathin Ga ₂ O ₃ Glass: A Large cale Passivation and Protection Material for Monolayer WS ₂ . Advanced Materials, 2021, 33, e2005732.	11.1	49
136	Electrochemical performance of graphene and copper oxide composites synthesized from a metal–organic framework (Cu-MOF). RSC Advances, 2013, 3, 19051.	1.7	46
137	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. Physical Review B, 2013, 88, .	1.1	46
138	Profound Effect of Substrate Hydroxylation and Hydration on Electronic and Optical Properties of Monolayer MoS ₂ . Nano Letters, 2015, 15, 3096-3102.	4.5	45
139	Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy, 2018, 50, 710-716.	8.2	44
140	Spatially Modulating the Fluorescence Color of Mixed-Halide Perovskite Nanoplatelets through Direct Femtosecond Laser Writing. ACS Applied Materials & Interfaces, 2019, 11, 26017-26023.	4.0	44
141	Broadband Nonlinear Photonics in Fewâ€Layer MXene Ti ₃ C ₂ T _x (T =) Tj E	ГQq1_1 0.	784314 rgBT 43
142	Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. ACS Photonics, 2016, 3, 1986-1992.	3.2	42
143	<i>In situ</i> observation of the thermal stability of black phosphorus. 2D Materials, 2017, 4, 025001.	2.0	42
144	Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Applied Physics Letters, 2007, 91, 223901.	1.5	41

#	Article	IF	CITATIONS
145	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	4.0	41
146	Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5954-5961.	2.7	41
147	Selective laser sintering of TiO ₂ nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. Journal of Materials Chemistry A, 2014, 2, 4566-4573.	5.2	40
148	Degradation of Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite and CH ₃ NH ₃ PbI ₃ /Graphene Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 24258-24265.	4.0	40
149	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. Nano Letters, 2022, 22, 4260-4268.	4.5	40
150	Covalently linked DNA/protein multilayered film for controlled DNA release. Journal of Colloid and Interface Science, 2007, 314, 80-88.	5.0	39
151	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation. Advanced Materials, 2021, 33, e2101042.	11.1	38
152	Lithium Insertion in Channel-Structured β-AgVO ₃ : <i>In Situ</i> Raman Study and Computer Simulation. Chemistry of Materials, 2007, 19, 5965-5972.	3.2	37
153	Anisotropic polaritons in van der Waals materials. InformaÄnÃ-Materiály, 2020, 2, 777-790.	8.5	36
154	Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances, 2021, 7, eabj0127.	4.7	36
155	Graphene-Based Transparent Electrodes for Hybrid Solar Cells. Frontiers in Materials, 2014, 1, .	1.2	35
156	Bilayer Bismuth Selenide nanoplatelets based saturable absorber for ultra-short pulse generation (Invited). Optics Communications, 2017, 395, 55-60.	1.0	35
157	The Lightâ€Induced Fieldâ€Effect Solar Cell Concept – Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency. Advanced Materials, 2017, 29, 1606370.	11.1	35
158	Highly Stable Pdâ€Based Catalytic Nanoarchitectures for Low Temperature Fuel Cells. Fuel Cells, 2008, 8, 429-435.	1.5	34
159	Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chemical Engineering Science, 2019, 194, 36-44.	1.9	34
160	Largeâ€ 5 cale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	2.6	33
161	Cavity QED analysis of an exciton-plasmon hybrid molecule via the generalized nonlocal optical response method. Physical Review B, 2017, 95, .	1.1	33
162	Photonic surface waves enabled perfect infrared absorption by monolayer graphene. Nano Energy, 2018, 48, 161-169.	8.2	33

#	Article	IF	CITATIONS
163	Organic Thin-Film Transistors Processed from Relatively Nontoxic, Environmentally Friendlier Solvents. Chemistry of Materials, 2010, 22, 5747-5753.	3.2	31
164	Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy, 2016, 30, 260-266.	8.2	31
165	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	1.3	31
166	Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells. Electrochimica Acta, 2013, 111, 755-761.	2.6	30
167	Illuminationâ€Induced Halide Segregation in Gradient Bandgap Mixedâ€Halide Perovskite Nanoplatelets. Advanced Optical Materials, 2018, 6, 1801107.	3.6	30
168	Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11, 8020-8026.	2.8	30
169	Electric-field-induced microstructural transformation of carbon nanotubes. Applied Physics Letters, 2006, 89, 063124.	1.5	29
170	Theoretical and Experimental Studies of Electronic Transport of Dithienothiophene. Journal of Physical Chemistry C, 2009, 113, 12530-12537.	1.5	28
171	Reliable Synthesis of Largeâ€Area Monolayer WS ₂ Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation. Advanced Optical Materials, 2018, 6, 1701347.	3.6	28
172	Well-aligned carbon nanotubes from ethanol flame. Journal of Materials Science Letters, 2002, 21, 1927-1929.	0.5	27
173	Enhanced light-harvesting of the conical TiO 2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells. Electrochimica Acta, 2014, 146, 838-844.	2.6	27
174	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. ACS Photonics, 2017, 4, 3055-3062.	3.2	27
175	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. Nano Letters, 2020, 20, 7811-7818.	4.5	27
176	Functionalized multi-walled carbon nanotubes as affinity ligands. Nanotechnology, 2007, 18, 115614.	1.3	26
177	Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene–Bi ₂ Te ₃ heterostructure saturable absorber-based fiber laser. Optical Engineering, 2016, 55, 081314.	0.5	26
178	Overcoming the Electroluminescence Efficiency Limitations in Quantumâ€Đot Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900695.	3.6	26
179	Superior Magnetoresistance Performance of Hybrid Graphene Foam/Metal Sulfide Nanocrystal Devices. ACS Applied Materials & Interfaces, 2019, 11, 19397-19403.	4.0	26
180	Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 nm to 10.768 µm. Advanced Functional Materials, 2019, 29, 1807274.	7.8	26

#	Article	IF	CITATIONS
181	Flat Lenses Based on 2D Perovskite Nanosheets. Advanced Materials, 2020, 32, e2001388.	11.1	26
182	Direct Observation and Analysis of Annealing-Induced Microstructure at Interface and Its Effect on Performance Improvement of Organic Thin Film Transistors. Journal of Physical Chemistry B, 2008, 112, 12270-12278.	1.2	25
183	Nanograting-assisted generation of surface plasmon polaritons in Weyl semimetal WTe2. Optical Materials, 2018, 86, 421-423.	1.7	25
184	Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH ₃ NH ₃ SnI ₃ perovskite saturable absorber. Journal Physics D: Applied Physics, 2018, 51, 375106.	1.3	25
185	Photophysical Mechanism for Quantum Dots-Induced Bacterial Growth Inhibition. Journal of Nanoscience and Nanotechnology, 2009, 9, 3252-3255.	0.9	24
186	Crystal-site engineering for developing tunable green light emitting Ba9Lu2Si6O24:Eu2+ phosphors for efficient white LEDs. Journal of Alloys and Compounds, 2018, 767, 374-381.	2.8	24
187	Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals. Journal of Materials Chemistry C, 2018, 6, 8977-8983.	2.7	24
188	Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	1.9	24
189	Optically driven black phosphorus as a saturable absorber for mode-locked laser pulse generation. Optical Engineering, 2016, 55, 081317.	0.5	23
190	Physics and Optoelectronic Simulation of Photodetectors Based on 2D Materials. Advanced Optical Materials, 2019, 7, 1900410.	3.6	23
191	Ultrasensitive WSe ₂ field-effect transistor-based biosensor for label-free detection of cancer in point-of-care applications. 2D Materials, 2021, 8, 045005.	2.0	23
192	Droplet microfluidic preparation of au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection. Microfluidics and Nanofluidics, 2010, 9, 1175-1183.	1.0	22
193	Synthesis of Ultrathin Composition Graded Doped Lateral WSe2/WS2Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 34204-34212.	4.0	22
194	Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Advanced Optical Materials, 2021, 9, 2100146.	3.6	22
195	Black phosphorus induced photo-doping for high-performance organic-silicon heterojunction photovoltaics. Nano Research, 2017, 10, 3848-3856.	5.8	21
196	Recoverable Photoluminescence of Flame-Synthesized Multiwalled Carbon Nanotubes and Its Intensity Enhancement at 240 K. Journal of Physical Chemistry C, 2007, 111, 10347-10352.	1.5	20
197	Spark plasma sintering-fabricated one-dimensional nanoscale "crystalline-amorphous―carbon heterojunction. Applied Physics Letters, 2008, 92, 113113.	1.5	20
198	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & Interfaces, 2020, 12, 26384-26390.	4.0	20

#	Article	IF	CITATIONS
199	Two-Dimensional Bi ₂ Sr ₂ CaCu ₂ O _{8+Î} Nanosheets for Ultrafast Photonics and Optoelectronics. ACS Nano, 2021, 15, 8919-8929.	7.3	20
200	Simulation for growth of multi-walled carbon nanotubes in electric field. Computational Materials Science, 2007, 39, 616-626.	1.4	19
201	Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects. Physical Review B, 2018, 98, .	1.1	19
202	Enhanced quantum efficiency from a mosaic of two dimensional MoS ₂ formed onto aminosilane functionalised substrates. Nanoscale, 2016, 8, 12258-12266.	2.8	18
203	Aqueous Electrochemical Activity of the Mg Surface: The Role of Group 14 and 15 Microalloying Elements. Journal of the Electrochemical Society, 2017, 164, C918-C929.	1.3	18
204	Perovskite Xâ€Ray Detectors: Flexible, Printable Softâ€Xâ€Ray Detectors Based on Allâ€Inorganic Perovskite Quantum Dots (Adv. Mater. 30/2019). Advanced Materials, 2019, 31, 1970214.	11.1	18
205	Growth of large-area atomically thin MoS_2 film via ambient pressure chemical vapor deposition. Photonics Research, 2015, 3, 110.	3.4	17
206	R6G molecule induced modulation of the optical properties of reduced graphene oxide nanosheets for use in ultrasensitive SPR sensing. Scientific Reports, 2016, 6, 21254.	1.6	17
207	Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy. Nanotechnology, 2017, 28, 264001.	1.3	17
208	Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review. Nano Materials Science, 2019, 1, 231-245.	3.9	17
209	Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells. Nano Energy, 2020, 67, 104223.	8.2	17
210	Monolayer Conveyor for Stably Trapping and Transporting Subâ€lÂnm Particles. Laser and Photonics Reviews, 2020, 14, 2000030.	4.4	17
211	Polarized Raman Scattering of Inâ€Plane Anisotropic Phonon Modes in α‑MoO ₃ . Advanced Optical Materials, 2022, 10, .	3.6	17
212	Wrapping Graphene Sheets Around Organic Wires for Making Memory Devices. Small, 2011, 7, 2372-2378.	5.2	16
213	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1842.	0.9	16
214	Efficient and Tunable Reflection of Phonon Polaritons at Builtâ€In Intercalation Interfaces. Advanced Materials, 2021, 33, e2008070.	11.1	16
215	Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS Nano, 2020, 14, 1123-1132.	7.3	15
216	Large magnetotransport properties in mixed-dimensional van der Waals heterostructures of graphene foam. Carbon, 2020, 159, 648-655.	5.4	15

#	Article	IF	CITATIONS
217	A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent. Chemical Communications, 2011, 47, 4153.	2.2	14
218	Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq ₂) hexagonal microsheets. Chemical Communications, 2014, 50, 10812-10814.	2.2	14
219	Top-grid monolayer graphene/Si Schottkey solar cell. Journal of Solid State Chemistry, 2015, 224, 102-106.	1.4	14
220	Photonics of 2D materials. Optics Communications, 2018, 406, 1-2.	1.0	14
221	Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing. Nanoscale Research Letters, 2016, 11, 248.	3.1	13
222	High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe ₃ . Journal of Materials Chemistry C, 2020, 8, 6659-6666.	2.7	13
223	Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3â^'xP nanocrystals. Frontiers of Optoelectronics, 2020, 13, 139-148.	1.9	13
224	Highly responsive broadband black phosphorus photodetectors. Chinese Optics Letters, 2018, 16, 020002.	1.3	13
225	Intermediate phase-enhanced Ostwald ripening for the elimination of phase segregation in efficient inorganic CsPbIBr2 perovskite solar cells. Science China Materials, 2021, 64, 2655-2666.	3.5	12
226	Ex and In Situ Confocal Raman Studies of Organic Thin Film and Its On-Working Transistors. Journal of Physical Chemistry C, 2008, 112, 19718-19726.	1.5	11
227	Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3·H2O nanocrystals/PVAmembrane. Chemical Communications, 2010, 46, 689-691.	2.2	11
228	Two-dimensional Ta2NiSe5/GaSe van der Waals heterojunction for ultrasensitive visible and near-infrared dual-band photodetector. Applied Physics Letters, 2022, 120, .	1.5	11
229	Controlled Growth of Monocrystalline Organoâ€Lead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie, 2017, 129, 12660-12665.	1.6	10
230	All-polarization-maintaining linear fiber laser mode-locked by nonlinear polarization evolution with phase bias. Optics and Laser Technology, 2021, 142, 107160.	2.2	10
231	Ideal type-II Weyl points in twisted one-dimensional dielectric photonic crystals. Optics Express, 2021, 29, 40606.	1.7	10
232	Electrocatalysts: Nitrogenâ€Doped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5876-5876.	7.8	9
233	Introduction to the Issue on 2-D Materials Optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 4-6.	1.9	9
234	Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection. Journal of Semiconductors, 2020, 41, 072907.	2.0	9

235	Study on optimization of nano-coatings for ultra-sensitive biosensors based on long-period fiber grating. Sensing and Bio-Sensing Research, 2020, 27, 100320.	2.2	9
236	Waveguiding and Lasing in 2D Organic Semiconductor Znq ₂ . Advanced Photonics Research, 2021, 2, 2000057.	1.7	8
237	Graphene and Mo ₂ C vertical heterostructure for femtosecond mode-locked lasers [Invited]. Optical Materials Express, 2019, 9, 3268.	1.6	8
238	Introduction to two-dimensional layered materials for ultrafast lasers. Photonics Research, 2018, 6, TDL1.	3.4	8
239	Wide-field in situ multiplexed Raman imaging with superresolution. Photonics Research, 2018, 6, 530.	3.4	7
240	Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application. AIP Conference Proceedings, 2018, , .	0.3	7
241	Optical Biochemical Sensors Based on 2D Materials. , 2019, , 379-406.		7
242	Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. ACS Nano, 2022, 16, 9041-9048.	7.3	7
243	Growth of polythiophene nano-walls and their unique electrochemical and optical properties. Materials Horizons, 2014, 1, 452.	6.4	6
244	Pulsed Lasers: Black Phosphorus-Polymer Composites for Pulsed Lasers (Advanced Optical Materials) Tj ETQq0 (0 0 rgBT /C	Overlock 10 Tf
245	Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2. Nano Research, 2021, 14, 4274-4280.	5.8	6
246	Graphene-polymer multilayer heterostructure for terahertz metamaterials. , 2013, , .		5
247	An Adaptive Soft Plasmonic Nanosheet Resonator. Laser and Photonics Reviews, 2019, 13, 1800302.	4.4	5
248	Van der Waals Semiconductors: Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070220.	11.1	5
249	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation (Adv. Mater. 32/2021). Advanced Materials, 2021, 33, 2170247.	11.1	5
250	Optical conductivity of a commensurate graphene-topological insulator heterostructure. Journal Physics D: Applied Physics, 2017, 50, 385301.	1.3	4
251	MoTe2, A novel anode material for sodium ion battery. AIP Conference Proceedings, 2018, , .	0.3	4
252	Probing the dynamic structural changes of <scp>DNA</scp> using ultrafast laser pulse in grapheneâ€based optofluidic device. InformaÄnÃ-Materiály, 2021, 3, 316-326.	8.5	4

#	Article	IF	CITATIONS
253	Tunable Cherenkov radiation based on a van der Waals semiconductor α-MoO ₃ and graphene hybrid. Optics Letters, 2022, 47, 2458.	1.7	4
254	Graphene mode locked ultrafast fiber lasers. , 2011, , .		3
255	All-Optical Signal Processing: Few-Layer Topological Insulator for All-Optical Signal Processing Using the Nonlinear Kerr Effect (Advanced Optical Materials 12/2015). Advanced Optical Materials, 2015, 3, 1768-1768.	3.6	3
256	Duplex Mikaelian and Duplex Maxwell's Fish-Eye Lenses. Physical Review Applied, 2020, 13, .	1.5	3
257	Layered 2H-MoTe2: A novel anode material for lithium-ion batteries. Materials Today: Proceedings, 2021,	0.9	3
258	Infrared Polaritonic Biosensors Based on Two-Dimensional Materials. Molecules, 2021, 26, 4651.	1.7	3
259	Synthesis of Millimeterâ€Scale Continuous WS 2 Film by Mitigating Poisoning of H 2 on WO 2.9 Precursor. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900480.	1.2	2
260	Electrically controllable magneto-optic effects in a two-dimensional hexagonal organometallic lattice. Physical Review B, 2020, 101, .	1.1	2
261	Invisibility concentrator based on van der Waals semiconductor α-MoO3. Nanophotonics, 2021, .	2.9	2
262	Atomic multi-layer graphene for dissipative soliton generation in Ytterbium-doped fiber laser. , 2010, , .		1
263	Nanofocusing of the surface plasmon polaritons in graphene at near infrared frequencies. , 2013, , .		1
264	Z-scan measurement of the refractive index of graphene: erratum. Optics Letters, 2013, 38, 1566.	1.7	1
265	High performance photodetectors based on two-dimensional materials. , 2015, , .		1
266	Carbon Nanomaterials in Flames: from 0-D to 1-D and 2-D. MRS Advances, 2016, 1, 1313-1325.	0.5	1
267	Biosensors: The Roadmap of Grapheneâ€Based Optical Biochemical Sensors (Adv. Funct. Mater. 19/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
268	Structural and electrochemical mechanism study of layered MoTe2 anode material for sodium-ion battery. AIP Conference Proceedings, 2019, , .	0.3	1
269	2D materials for bio-photonic applications. , 2020, , 253-280.		1
270	The Luneburg-Lissajous lens. Europhysics Letters, 2020, 129, 64001.	0.7	1

#	Article	IF	CITATIONS
271	A graphene–Mo ₂ C heterostructure for a highly responsive broadband photodetector. Physical Chemistry Chemical Physics, 2021, 23, 23024-23031.	1.3	1
272	Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 0, 545, 21-26.	0.3	0
273	Publisher's Note: Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission [Phys. Rev. B 88 , 205405 (2013)]. Physical Review B, 2014, 90, .	1.1	0
274	Pulsed Lasers: Pulsed Lasers Employing Solutionâ€Processed Plasmonic Cu _{3â~} <i>_x</i> P Colloidal Nanocrystals (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3604-3604.	11.1	0
275	Lightâ€Emitting Diodes: Solutionâ€Processed Extremely Efficient Multicolor Perovskite Lightâ€Emitting Diodes Utilizing Doped Electron Transport Layer (Adv. Funct. Mater. 21/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
276	Titelbild: Controlled Growth of Monocrystalline Organo‣ead Halide Perovskite and Its Application in Photonic Devices (Angew. Chem. 41/2017). Angewandte Chemie, 2017, 129, 12547-12547.	1.6	0
277	Graphene based heterostructures used for high performance broadband photodetectors. , 2017, , .		0
278	Nonlinear Microscopy of Lead Iodide Nanosheets. , 2019, , .		0
279	Light-emitting devices. , 2020, , 175-197.		0
280	Perovskite Lenses: Flat Lenses Based on 2D Perovskite Nanosheets (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070228.	11.1	0
281	Manipulating Evanescent Waves in a Gradient Waveguide. Physical Review Applied, 2020, 13, .	1.5	0
282	Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Toward the Recyclable Use of Sapphire Substrates. , 2015, , .		0
283	Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal. , 2016, , .		0
284	Application of Graphene in Lasers. , 2017, , 27-39.		0
285	Graphene-Based Light-Emitting Diodes. , 2017, , 147-161.		0
286	Graphene-Based Photodetectors. , 2017, , 65-80.		0
287	Revealing the Relationship between Design and Performance of Back-Contact Perovskite Solar Cells with Honeycomb Charge Collecting Electrode. , 0, , .		0

Nonlinear Microscopy of Strain in Lead Iodide Nanosheets. , 2019, , .

0

#	Article	IF	CITATIONS
289	Tuning the florescence color of gradient bandgap perovskite nanoplate by direct laser writing. , 2019, , .		0
290	Novel Optical and Photonic Devices based on 2D Materials: feature issue introduction. Optical Materials Express, 2020, 10, 1344.	1.6	0
291	Non-invasive Characterisation of Lead Iodide Nanosheets by Nonlinear Microscopy. , 2020, , .		0
292	Nonlinear microscopy of lead iodide nanosheets. Optics Express, 2022, 30, 4793.	1.7	0