V Ya Shur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731802/publications.pdf

Version: 2024-02-01

542 papers 9,657 citations

44069 48 h-index 71 g-index

566 all docs

566 docs citations 566 times ranked 6038 citing authors

#	Article	IF	CITATIONS
1	Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 2020, 67, 104264.	16.0	320
2	Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Applied Physics Letters, 1999, 75, 1673-1675.	3.3	215
3	Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Physical Review B, 2011, 83, .	3.2	214
4	Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3. Journal of Materials Science, 2006, 41, 199-210.	3.7	187
5	Micro- and nano-domain engineering in lithium niobate. Applied Physics Reviews, 2015, 2, .	11.3	173
6	Silica–gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale, 2015, 7, 8003-8015.	5.6	171
7	Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics. Journal of Applied Physics, 1998, 84, 445-451.	2.5	149
8	Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66.	16.7	129
9	Nanoscale backswitched domain patterning in lithium niobate. Applied Physics Letters, 2000, 76, 143-145.	3.3	125
10	Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters, 2000, 77, 3636-3638.	3.3	95
11	Growth and concentration dependencies of rare-earth doped lithium niobate single crystals. Journal of Crystal Growth, 2006, 291, 390-397.	1.5	93
12	Photoresponsive Organic–Inorganic Hybrid Ferroelectric Designed at the Molecular Level. Journal of the American Chemical Society, 2020, 142, 16990-16998.	13.7	92
13	A comparative study of structural and electrical properties in lead-free BCZT ceramics: Influence of the synthesis method. Acta Materialia, 2018, 155, 331-342.	7.9	85
14	Piezoelectric properties of diphenylalanine microtubes prepared from the solution. Journal of Physics and Chemistry of Solids, 2016, 93, 68-72.	4.0	81
15	Correlated Nucleation and Self-Organized Kinetics of Ferroelectric Domains. , 2005, , 178-214.		78
16	Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics, 2000, 236, 129-144.	0.6	75
17	In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology, 2017, 380, 72-93.	4.2	74
18	Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate. Optics Letters, 1999, 24, 1293.	3.3	68

#	Article	IF	CITATIONS
19	Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. International Journal of Molecular Sciences, 2014, 15, 12379-12406.	4.1	68
20	Comparative in Vivo Assessment of Some Adverse Bioeffects of Equidimensional Gold and Silver Nanoparticles and the Attenuation of Nanosilver's Effects with a Complex of Innocuous Bioprotectors. International Journal of Molecular Sciences, 2013, 14, 2449-2483.	4.1	67
21	Nano- and micro-domain engineering in normal and relaxor ferroelectrics. , 2008, , 622-669.		66
22	Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals. Journal of Applied Physics, 2011, 110, 052013.	2 . 5	65
23	Humidity effects on tip-induced polarization switching in lithium niobate. Applied Physics Letters, 2014, 104, 092908.	3.3	64
24	Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiology, 2017, 13, 345-363.	1.2	64
25	Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics, 2001, 257, 191-202.	0.6	63
26	Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. Physical Review B, 2009, 80, .	3.2	63
27	Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory. Applied Surface Science, 2018, 436, 697-707.	6.1	63
28	Domain structure of lead germanate. Ferroelectrics, 1989, 98, 29-49.	0.6	62
29	Domain Engineering in Lithium Niobate and Lithium Tantalate: Domain Wall Motion. Ferroelectrics, 2006, 340, 3-16.	0.6	62
30	Toward Ferroelectric Control of Monolayer MoS ₂ . Nano Letters, 2015, 15, 3364-3369.	9.1	62
31	Raman visualization of micro- and nanoscale domain structures inÂlithium niobate. Applied Physics A: Materials Science and Processing, 2010, 99, 741-744.	2.3	61
32	Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy. Journal of Applied Physics, 2014, 116, .	2.5	61
33	Rearrangement of ferroelectric domain structure induced by chemical etching. Applied Physics Letters, 2005, 87, 022905.	3.3	60
34	Atomic structure, electronic states, and optical properties of epitaxially grown \hat{l}^2 -Ga2O3 layers. Superlattices and Microstructures, 2018, 120, 90-100.	3.1	60
35	Domain kinetics in the formation of a periodic domain structure in lithium niobate. Physics of the Solid State, 1999, 41, 1681-1687.	0.6	58
36	Symmetry Breaking and Electrical Frustration during Tip-Induced Polarization Switching in the Nonpolar Cut of Lithium Niobate Single Crystals. ACS Nano, 2015, 9, 769-777.	14.6	58

#	Article	lF	Citations
37	Finite size and intrinsic field effect on the polar-active properties of ferroelectric-semiconductor heterostructures. Physical Review B, 2010, 81, .	3.2	57
38	Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric. Scientific Reports, 2016, 6, 19630.	3.3	57
39	Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chemical Engineering Journal, 2022, 434, 134678.	12.7	57
40	Polarization reversal in congruent and stoichiometric lithium tantalate. Applied Physics Letters, 2001, 79, 3146-3148.	3.3	56
41	Kinetics of ferroelectric domain structure during switching: Theory and experiment. Ferroelectrics, 1994, 151, 171-180.	0.6	55
42	Kinetics of ferroelectric domain structure: Retardation effects. Ferroelectrics, 1997, 191, 319-333.	0.6	55
43	Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate. Journal of Applied Physics, $2011,110,$.	2.5	55
44	Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2015, 16, 22555-22583.	4.1	55
45	Physical basis of the domain engineering in the bulk ferroelectrics. Ferroelectrics, 1999, 221, 157-167.	0.6	54
46	Formation of Self-Similar Surface Nano-Domain Structures in Lithium Niobate Under Highly Nonequilibrium Conditions. Ferroelectrics, 2006, 341, 85-93.	0.6	52
47	Subchronic Systemic Toxicity and Bioaccumulation of Fe ₃ O ₄ Nano- and Microparticles Following Repeated Intraperitoneal Administration to Rats. International Journal of Toxicology, 2011, 30, 59-68.	1.2	52
48	Characterization of PPLN-microstructures by means of Raman spectroscopy. Applied Physics A: Materials Science and Processing, 2008, 91, 65-67.	2.3	49
49	Direct Probing of Charge Injection and Polarization ontrolled Ionic Mobility on Ferroelectric LiNbO ₃ Surfaces. Advanced Materials, 2014, 26, 958-963.	21.0	49
50	Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes. Applied Physics Letters, 2016, 109, .	3.3	49
51	Ionic field effect and memristive phenomena in single-point ferroelectric domain switching. Nature Communications, 2014, 5, 4545.	12.8	48
52	Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects. Phase Transitions, 1998, 65, 49-72.	1.3	47
53	Kinetic approach to fatigue phenomenon in ferroelectrics. Journal of Applied Physics, 2001, 90, 6312-6315.	2.5	47
54	Domain Shape in Congruent and Stoichiometric Lithium Tantalate. Ferroelectrics, 2002, 269, 195-200.	0.6	47

#	Article	IF	Citations
55	Field Induced Evolution of Regular and Random 2D Domain Structures and Shape of Isolated Domains in LiNbO3 and LiTaO3. Ferroelectrics, 2006, 341, 109-116.	0.6	47
56	Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. Journal of Materiomics, 2022, 8, 527-536.	5.7	47
57	<i>In situ</i> investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation. Applied Physics Letters, 2011, 99, 082901.	3.3	46
58	Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food and Chemical Toxicology, 2015, 86, 351-364.	3.6	46
59	Screening and retardation effects on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn> 180 </mml:mn> <mml:mo> ° </mml:mo> </mml:mrow> </mml:math> -domwall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions. Physical Review B. 2008. 78.	ain 3.2	44
60	Dynamics of plane domain walls in lead germanate and gadolinium molybdate. Ferroelectrics, 1990, 111, 197-206.	0.6	43
61	Growth and Nonlinear Optical Properties of \hat{I}^2 -Glycine Crystals Grown on Pt Substrates. Crystal Growth and Design, 2014, 14, 2831-2837.	3.0	42
62	Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Applied Physics Letters, 2015, 106, .	3.3	42
63	On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology, 2016, 363-364, 19-28.	4.2	41
64	Low-temperature photoluminescence in self-assembled diphenylalanine microtubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1658-1662.	2.1	40
65	Dynamics of domain structure in uniaxial ferroelectrics. Ferroelectrics, 1990, 111, 123-131.	0.6	40
66	Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chemical Engineering Journal, 2022, 446, 137389.	12.7	40
67	Dielectric relaxation and charged domain walls in (K,Na)NbO3-based ferroelectric ceramics. Journal of Applied Physics, 2017, 121, .	2.5	39
68	Tilt control of the charged domain walls in lithium niobate. Applied Physics Letters, 2019, 114, .	3.3	39
69	Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1â°'x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. Journal of Materiomics, 2022, 8, 335-346.	5.7	39
70	Polarization fatigue in PbZr0.45Ti0.55O3-based capacitors studied from high resolution synchrotron x-ray diffraction. Journal of Applied Physics, 2005, 97, 064108.	2.5	38
71	Shape of isolated domains in lithium tantalate single crystals at elevated temperatures. Applied Physics Letters, 2013, 103, .	3.3	38
72	Chirality-Dependent Growth of Self-Assembled Diphenylalanine Microtubes. Crystal Growth and Design, 2019, 19, 6414-6421.	3.0	38

#	Article	IF	CITATIONS
73	How to extract information about domain kinetics in thin ferroelectric films from switching transient current data. Integrated Ferroelectrics, 1994, 5, 293-301.	0.7	37
74	Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. Journal of the European Ceramic Society, 2022, 42, 944-953.	5.7	37
75	Interaction of domain walls with defects in ferroelectric materials. Mechanics of Materials, 2007, 39, 161-174.	3.2	36
76	The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics. Acta Materialia, 2017, 125, 265-273.	7.9	36
77	Time-dependent conduction current in lithium niobate crystals with charged domain walls. Applied Physics Letters, 2013, 103, .	3.3	35
78	A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology, 2017, 384, 59-68.	4.2	35
79	Immobilization of PMIDA on Fe3O4 magnetic nanoparticles surface: Mechanism of bonding. Applied Surface Science, 2018, 440, 1196-1203.	6.1	35
80	Ferroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka0.5Na0.5)NbO3 and BiFeO3-Based Piezoelectric Ceramics. Materials, 2017, 10, 47.	2.9	34
81	Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials & Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing. ACS Applied Materials via Inkjet Printing. ACS Applied Via Inkje	8.0	34
82	Domain patterning by electron beam of MgO doped lithium niobate covered by resist. Applied Physics Letters, 2015, 106, .	3.3	33
83	Periodically poled crystals of KTP family: a review. Ferroelectrics, 2016, 496, 49-69.	0.6	33
84	Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications. Crystal Growth and Design, 2016, 16, 1472-1479.	3.0	33
85	Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1778.	4.1	33
86	Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceramics International, 2021, 47, 6298-6309.	4.8	33
87	Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. Journal of Alloys and Compounds, 2022, 896, 163139.	5.5	33
88	Crystal growth and domain structure evolution. Ferroelectrics, 1993, 142, 1-7.	0.6	32
89	Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). International Journal of Nanomedicine, 2015, 10, 3013.	6.7	32
90	Local manifestations of a static magnetoelectric effect in nanostructured BaTiO ₃ â€"BaFe ₁₂ O ₉ composite multiferroics. Nanoscale, 2015, 7, 4489-4496.	5.6	32

#	Article	IF	CITATIONS
91	Temperature and Compositionâ€Induced Structural Transitions in <scp><scp>Bi</scp></scp> /scp>	:sub 3.& i>x<	i>& ± ub> <s○< td=""></s○<>
92	<i>In Situ</i> Observation of the Humidity Controlled Polymorphic Phase Transformation in Glycine Microcrystals. Crystal Growth and Design, 2014, 14, 4138-4142.	3.0	31
93	Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic. Journal of Applied Physics, 2018, 124, .	2.5	31
94	Barkhausen Jumps During Domain Wall Motion in Ferroelectrics. Ferroelectrics, 2002, 267, 347-353.	0.6	30
95	Investigation of Jerky Domain Wall Motion in Lithium Niobate. Ferroelectrics, 2008, 374, 136-143.	0.6	30
96	Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals. Journal of Applied Physics, 2012, 112, .	2.5	30
97	XPS-and-DFT analyses of the Pb 4f â€" Zn 3s and Pb 5d â€" O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite. Applied Surface Science, 2017, 405, 129-136.	6.1	30
98	Quantitative characterization of the ionic mobility and concentration in Li-battery cathodes <i>via</i>) low frequency electrochemical strain microscopy. Nanoscale, 2018, 10, 2503-2511.	5.6	30
99	Change of domain structure of lead germanate in strong electric field. Ferroelectrics, 1992, 126, 371-376.	0.6	29
100	New Approach to Analysis of the Switching Current Data in Ferroelectric Thin Films. Ferroelectrics, 2003, 291, 27-35.	0.6	29
101	Raman Study of Neutral and Charged Domain Walls in Lithium Niobate. Ferroelectrics, 2010, 398, 34-41.	0.6	29
102	Sizes and fluorescence of cadmium sulfide quantum dots. Physics of the Solid State, 2013, 55, 624-628.	0.6	29
103	Evolution of bias field and offset piezoelectric coefficient in bulk lead zirconate titanate with fatigue. Applied Physics Letters, 2005, 86, 012910.	3.3	28
104	Some Peculiarities of Pulmonary Clearance Mechanisms in Rats after Intratracheal Instillation of Magnetite (Fe ₃ O ₄) Suspensions with Different Particle Sizes in the Nanometer and Micrometer Ranges: Are We Defenseless against Nanoparticles?. International Journal of Occupational and Environmental Health, 2010, 16, 508-524.	1.2	28
105	Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO 2 -host by Pb-implantation: XPS-and-DFT characterization. Applied Surface Science, 2017, 400, 110-117.	6.1	28
106	The MRO-accompanied modes of Re-implantation into SiO2-host matrix: XPS and DFT based scenarios. Journal of Alloys and Compounds, 2017, 728, 759-766.	5 . 5	28
107	Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2018, 19, 837.	4.1	28
108	Enhanced energy storage performance of eco-friendly BNT-based relaxor ferroelectric ceramics via polarization mismatch-reestablishment and viscous polymer process. Ceramics International, 2022, 48, 6512-6519.	4.8	28

#	Article	IF	CITATIONS
109	Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. Journal of the European Ceramic Society, 2022, 42, 4528-4538.	5.7	28
110	Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate. Ferroelectrics, 2001, 253, 105-114.	0.6	27
111	Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family. Physics of the Solid State, 2010, 52, 2147-2153.	0.6	27
112	Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures. Journal of Applied Physics, 2012, 112, 104113.	2.5	27
113	Emission of electrons on switching of the Gd2(MoO4)3ferroelectricâ€ferroelastic in electric field. Applied Physics Letters, 1990, 56, 689-691.	3.3	26
114	Raman Probe on PPLN Microstructures. Ferroelectrics, 2008, 373, 26-31.	0.6	26
115	Formation of Nano-Scale Domain Structures in Lithium Niobate Using High-Intensity Laser Irradiation. Ferroelectrics, 2008, 373, 133-138.	0.6	26
116	Discrete Switching by Growth of Nano-Scale Domain Rays Under Highly-Nonequilibrium Conditions in Lithium Niobate Single Crystals. Ferroelectrics, 2008, 373, 99-108.	0.6	26
117	Domain Nanotechnology in Lithium Niobate and Lithium Tantalate Crystals. Ferroelectrics, 2010, 399, 97-106.	0.6	26
118	Superfast domain walls in KTP single crystals. Applied Physics Letters, 2017, 111, .	3.3	26
119	Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 109-113.	3 . 5	25
120	Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate. Applied Physics Letters, 2016, 108, .	3.3	25
121	L-Lysine-modified Fe3O4 nanoparticles for magnetic cell labeling. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110879.	5.0	25
122	Self-Organization in LiNbO3and LiTaO3: Formation of Micro- and Nano-Scale Domain Patterns. Ferroelectrics, 2004, 304, 111-116.	0.6	24
123	Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals. Journal of Applied Physics, 2013, 113, .	2.5	24
124	Characterization of LiMn2O4 cathodes by electrochemical strain microscopy. Applied Physics Letters, 2016, 108, .	3.3	24
125	Raman spectroscopy, "big dataâ€, and local heterogeneity of solid state synthesized lithium titanate. Journal of Power Sources, 2017, 346, 143-150.	7.8	24
126	Laser-induced modification of glass–ceramics microstructure and applications. Applied Surface Science, 2005, 248, 231-237.	6.1	23

#	Article	IF	CITATIONS
127	Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. Journal of Applied Physics, 2012, 111, 014101.	2.5	23
128	Ferroelectric switching by the grounded scanning probe microscopy tip. Physical Review B, 2015, 91, .	3.2	23
129	Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy. Journal of Applied Physics, 2015, 118, .	2.5	23
130	Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of \hat{l}^2 -Glycine. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20029-20037.	8.0	23
131	Are inÂvivo and inÂvitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn 3 O 4 nanoparticles. Food and Chemical Toxicology, 2017, 109, 393-404.	3. 6	23
132	Self-Organized Formation of Quasi-Regular Ferroelectric Nanodomain Structure on the Nonpolar Cuts by Grounded SPM Tip. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36211-36217.	8.0	23
133	Temperature-dependent Raman spectroscopy, domain morphology and photoluminescence studies in lead-free BCZT ceramic. Ceramics International, 2021, 47, 2828-2838.	4.8	23
134	Fast reversal process in real ferroelectrics. Integrated Ferroelectrics, 1992, 2, 51-61.	0.7	22
135	Shape Evolution of Isolated Micro-Domains in Lithium Niobate. Ferroelectrics, 2007, 360, 111-119.	0.6	22
136	Influence of Surface Layers Modified by Proton Exchange on Domain Kinetics of Lithium Niobate. Ferroelectrics, 2008, 374, 14-19.	0.6	22
137	Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4. Applied Physics Letters, 2014, 104, .	3.3	22
138	Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate. Applied Physics Letters, 2014, 105, .	3.3	22
139	Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 690.	4.1	22
140	Some Peculiarities of Pulmonary Clearance Mechanisms in Rats after Intratracheal Instillation of Magnetite (Fe ₃ O ₄) Suspensions with Different Particle Sizes in the Nanometer and Micrometer Ranges: Are We Defenseless against Nanoparticles?. International Journal of Occupational and Environmental Health, 2010, 16, 508-524.	1.2	22
141	Domain Nanotechnology in Ferroelectrics: Nano-Domain Engineering in Lithium Niobate Crystals. Ferroelectrics, 2008, 373, 1-10.	0.6	21
142	AC Switching of Relaxor PLZT Ceramics. Ferroelectrics, 2005, 314, 245-253.	0.6	20
143	Study of Nanoscale Domain Structure Formation Using Raman Confocal Microscopy. Ferroelectrics, 2010, 398, 91-97.	0.6	20
144	Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3. Journal of Applied Physics, 2015, 118, .	2.5	20

#	Article	IF	Citations
145	Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films. Journal of Applied Physics, 2016, 120, .	2.5	20
146	Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. Nanomedicine and Nanotoxicology, 2017, , 259-319.	0.2	20
147	Electroâ€chemomechanical Contribution to Mechanical Actuation in Gdâ€Doped Ceria Membranes. Advanced Materials Interfaces, 2019, 6, 1801592.	3.7	20
148	Nanoscale Domain Effects in Ferroelectrics. Formation and Evolution of Self-Assembled Structures in LiNbO ₃ and LiTaO ₃ . Ferroelectrics, 2007, 354, 145-157.	0.6	19
149	Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles. International Journal of Molecular Sciences, 2014, 15, 21538-21553.	4.1	19
150	Electromechanical properties of electrostrictive CeO2:Gd membranes: Effects of frequency and temperature. Applied Physics Letters, 2017, 110, .	3.3	19
151	Influence of irradiation on the switching behavior in PZT thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 141-145.	3.5	18
152	Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate. Physics of the Solid State, 2008, 50, 717-723.	0.6	18
153	Abnormal Domain Growth in Lithium Niobate with Surface Layer Modified by Proton Exchange. Ferroelectrics, 2010, 398, 108-114.	0.6	18
154	Domain Nanotechnology in Ferroelectric Single Crystals: Lithium Niobate and Lithium Tantalate Family. Ferroelectrics, 2013, 443, 71-82.	0.6	18
155	pHLIP-modified magnetic nanoparticles for targeting acidic diseased tissue. RSC Advances, 2016, 6, 60196-60199.	3.6	18
156	Temperature Effect on the Stability of the Polarized State Created by Local Electric Fields in Strontium Barium Niobate Single Crystals. Scientific Reports, 2017, 7, 125.	3.3	17
157	Direct observation of the domain kinetics during polarization reversal of tetragonal PMN-PT crystal. Applied Physics Letters, 2018, 113, .	3.3	17
158	Domain structure formation by local switching in the ion sliced lithium niobate thin films. Applied Physics Letters, 2020, 116, .	3.3	17
159	Forward growth of ferroelectric domains with charged domain walls. Local switching on non-polar cuts. Journal of Applied Physics, 2021, 129, .	2.5	17
160	Elastic light scattering as a probe for detail in situ investigations of domain and phase evolution. Ferroelectrics, 1995, 169, 63-73.	0.6	16
161	Transient current during switching in increasing electric field as a basis for a new testing method. Integrated Ferroelectrics, 1995, 10, 223-230.	0.7	16
162	Fractal-cluster kinetics in phase transformations in the relaxor ceramic PLZT. Physics of the Solid State, 1999, 41, 453-456.	0.6	16

#	Article	IF	CITATIONS
163	Domain Kinetics in Congruent and Stoichiometric Lithium Niobate. Ferroelectrics, 2002, 269, 189-194.	0.6	16
164	Characterization of Bulk Screening in Single Crystals of Lithium Niobate and Lithium Tantalate Family. Ferroelectrics, 2008, 374, 1-13.	0.6	16
165	Lithium niobate and lithium tantalate-based piezoelectric materials., 2010,, 204-238.		16
166	Formation of Nanodomain Structure in Front of the Moving Domain Wall in Lithium Niobate Single Crystal Modified by Proton Exchange. Ferroelectrics, 2013, 442, 82-91.	0.6	16
167	Ferroelectric domain triggers the charge modulation in semiconductors (invited). Journal of Applied Physics, 2014, 116, 066817.	2.5	16
168	Self-organizing formation of dendrite domain structures in lithium niobate and lithium tantalate crystals. Ferroelectrics, 2016, 500, 76-89.	0.6	16
169	Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170204.	3.4	16
170	Local Study of Lithiation and Degradation Paths in LiMn2O4 Battery Cathodes: Confocal Raman Microscopy Approach. Batteries, 2018, 4, 21.	4.5	16
171	Forming of the domain structure in lead germanate during phase transition. Ferroelectrics, 1993, 140, 305-312.	0.6	15
172	Observation and manipulation of the as-grown maze domain structure in lead germanate by scanning force microscopy. Applied Physics Letters, 2006, 88, 252902.	3.3	15
173	Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Applied Physics Letters, 2014, 105, .	3.3	15
174	Nonlinear Raman–Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39, 4231.	3.3	15
175	Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating. AIP Advances, 2015, 5, 107110.	1.3	15
176	Morphology and Piezoelectric Properties of Diphenylalanine Microcrystals Grown from Methanol-Water Solution. Ferroelectrics, 2015, 475, 127-134.	0.6	15
177	The electronic conductivity in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics, 2016, 496, 102-109.	0.6	15
178	Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange. Journal of Applied Physics, 2017, 121, 104101.	2.5	15
179	As-grown domain structure in lithium tantalate with spatially nonuniform composition. Ferroelectrics, 2018, 525, 47-53.	0.6	15
180	More data on in vitro assessment of comparative and combined toxicity of metal oxide nanoparticles. Food and Chemical Toxicology, 2019, 133, 110753.	3.6	15

#	Article	IF	Citations
181	Statics and dynamics of ferroelectric domains in molecular multiaxial ferroelectric (Me ₃ NOH) ₂ [KCo(CN) ₆]. Journal of Materials Chemistry C, 2021, 9, 10741-10748.	5. 5	15
182	Smooth and jump-like dynamics of the plane domain wall in gadolinium molybdate. Ferroelectrics, 1999, 222, 323-331.	0.6	14
183	Influence of crystallization kinetics on texture of sol–gel PZT and BST thin films. Journal of the European Ceramic Society, 1999, 19, 1391-1395.	5.7	14
184	Dynamics of a single-planar domain wall in ferroelectric–ferroelastic Gd2(MoO4)3. Applied Physics Letters, 2002, 80, 2359-2361.	3.3	14
185	Polarization Switching in Heterophase Nanostructures: PLZT Relaxor Ceramics. Physics of the Solid State, 2005, 47, 1340.	0.6	14
186	Kinetics of the Local Polarization Switching in Stoichiometric LiTaO3Under Electric Field Applied Using the Tip of Scanning Probe Microscope. Ferroelectrics, 2006, 340, 129-136.	0.6	14
187	Nanoscale Domain Structuring in Lithium Niobate Single Crystals by Pulse Laser Heating. Ferroelectrics, 2010, 398, 49-54.	0.6	14
188	Electron Beam Domain Patterning of MgO-Doped Lithium Niobate Crystals Covered by Resist Layer. Ferroelectrics, 2015, 476, 117-126.	0.6	14
189	Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO ₃ covered by resist layer. Ferroelectrics, 2016, 496, 70-78.	0.6	14
190	The Formation of Self-Organized Domain Structures at Non-Polar Cuts of Lithium Niobate as a Result of Local Switching by an SPM Tip. Materials, 2017, 10, 1143.	2.9	14
191	Double Sr2Ni1â^'Mg MoO6 perovskites (x= 0, 0.25) as perspective anode materials for LaGaO3-based solid oxide fuel cells. Solid State Ionics, 2018, 314, 112-118.	2.7	14
192	Geometrical transformations of the ferroelectric domain structure in electric field. Ferroelectrics, 1995, 172, 361-372.	0.6	13
193	Kinetic approach for describing the fatigue effect in ferroelectrics. Physics of the Solid State, 2002, 44, 2145-2150.	0.6	13
194	Fractal Clusters in Relaxor PLZT Ceramics: Evolution in Electric Field. Ferroelectrics, 2004, 299, 75-81.	0.6	13
195	Raman Micro-Spectroscopy as a Probe to Investigate PPLN Structures. Ferroelectrics, 2007, 352, 106-110.	0.6	13
196	Local Study of Polarization Reversal Kinetics in Ferroelectric Crystals Using Scanning Probe Microscopy. Ferroelectrics, 2008, 374, 26-32.	0.6	13
197	Piezoelectric and ferroelectric properties of organic single crystals and films derived from chiral 2-methoxy and 2-amino acids. Ferroelectrics, 2016, 496, 1-9.	0.6	13
198	Visualization of nanodomain structures in lithium niobate and lithium tantalate crystals by scanning electron microscopy. Ferroelectrics, 2016, 503, 60-67.	0.6	13

#	Article	IF	Citations
199	Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics. Physical Review B, 2016, 93, .	3.2	13
200	The Ferroelectric Domain Structures Induced by Electron Beam Scanning in Lithium Niobate. Scanning, 2018, 2018, 1-6.	1.5	13
201	Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth. Applied Physics Letters, 2019, 114, .	3.3	13
202	Surface Piezoelectricity and Pyroelectricity in Centrosymmetric Materials: A Case of $\hat{l}\pm$ -Glycine. Materials, 2020, 13, 4663.	2.9	13
203	Domain structure evolution during alternating current poling and its influence on the piezoelectric properties in [001]-cut rhombohedral PIN-PMN-PT single crystals. Applied Physics Letters, 2021, 118, .	3.3	13
204	Silica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhance peptide immobilization efficiency. Ceramics International, 2021, 47, 23078-23087.	4.8	13
205	Structure, dielectric, electrostrictive and electrocaloric properties of environmentally friendly Bi-substituted BCZT ferroelectric ceramics. Ceramics International, 2021, 47, 34676-34686.	4.8	13
206	Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Materialia, 2021, 219, 117270.	7.9	13
207	New Approach to Analysis of the Switching Current Data, Recorded During Conventional Hysteresis Measurements. Integrated Ferroelectrics, 2003, 53, 379-390.	0.7	12
208	Formation of Stripe Domain Structures by Pulse Laser Irradiation of LiNbO ₃ Crystals. Ferroelectrics, 2010, 399, 7-13.	0.6	12
209	Micro-Raman Visualization of Domain Structure in Strontium Barium Niobate Single Crystals. Ferroelectrics, 2012, 439, 33-39.	0.6	12
210	Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals. Applied Physics Letters, 2017, 110, .	3.3	12
211	Graphiteâ€bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian craton: combined confocal microâ€Raman and electron microprobe characterization. Journal of Raman Spectroscopy, 2017, 48, 1597-1605.	2.5	12
212	Forbidden mineral assemblage coesiteâ€disordered graphite in diamondâ€bearing kyanite gneisses (Kokchetav Massif). Journal of Raman Spectroscopy, 2017, 48, 1606-1612.	2.5	12
213	Bulk In2O3 crystals grown by chemical vapour transport: a combination of XPS and DFT studies. Journal of Materials Science: Materials in Electronics, 2019, 30, 18753-18758.	2.2	12
214	Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose-Response, 2020, 18, 155932582091418.	1.6	12
215	Silicon-hydroxyapatiteâ€'glycerohydrogel as a promising biomaterial for dental applications. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110851.	5.0	12
216	In-plane polarization contribution to the vertical piezoresponse force microscopy signal mediated by the cantilever "bucklingâ€. Applied Surface Science, 2021, 543, 148808.	6.1	12

#	Article	IF	Citations
217	Kinetics of domain structure and switching currents in single crystals of congruent and stoichiometric lithium tantalate. Physics of the Solid State, 2002, 44, 2151-2156.	0.6	11
218	Study of Domain Structure Kinetics in SBN Crystals Using Optical Methods. Ferroelectrics, 2008, 374, 33-40.	0.6	11
219	Abnormal Domain Evolution in Lithium Niobate with Surface Layer Modified by Cu Ion Implantation. Ferroelectrics, 2010, 399, 49-57.	0.6	11
220	Formation of Self-Assembled Domain Structures in Lithium Niobate Modified by Ar Ions Implantation. Ferroelectrics, 2010, 399, 35-42.	0.6	11
221	Fatigue effect in ferroelectric crystals: Growth of the frozen domains. Journal of Applied Physics, 2012, 111, .	2.5	11
222	Domain Kinetics in Lithium Niobate Single Crystals with Photoresist Dielectric Layer. Ferroelectrics, 2012, 439, 3-12.	0.6	11
223	Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers. Applied Physics Letters, 2015, 106, .	3.3	11
224	Formation of snowflake domains during fast cooling of lithium tantalate crystals. Journal of Applied Physics, 2016, 119, .	2.5	11
225	Formation of single domain state and spontaneous backswitching in SBN single crystal. Ferroelectrics, 2016, 496, 149-156.	0.6	11
226	Piezoelectric poly(lactide) stereocomplexes with a cholinium organic ionic plastic crystal. Journal of Materials Chemistry C, 2017, 5, 12134-12142.	5.5	11
227	Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceramics International, 2017, 43, 12828-12834.	4.8	11
228	Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics, 2018, 525, 168-177.	0.6	11
229	Correlative Confocal Raman and Scanning Probe Microscopy in the Ionically Active Particles of LiMn2O4 Cathodes. Materials, 2019, 12, 1416.	2.9	11
230	Domain Diversity and Polarization Switching in Amino Acid Î ² -Glycine. Materials, 2019, 12, 1223.	2.9	11
231	Modeling and physical properties of diphenylalanine peptide nanotubes containing water molecules. Ferroelectrics, 2021, 574, 78-91.	0.6	11
232	Tunable order in colloids of hard magnetic hexaferrite nanoplatelets. Nano Research, 2022, 15, 898-906.	10.4	11
233	Second harmonic generation in periodically poled lithium niobate waveguides with stitching errors. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 331.	2.1	11
234	How to learn the domain kinetics from the switching current data. Integrated Ferroelectrics, 1999, 27, 179-194.	0.7	10

#	Article	IF	CITATIONS
235	Barkhausen effect in stepped motion of a plane domain boundary in gadolinium molybdate. Physics of the Solid State, 1999, 41, 269-273.	0.6	10
236	Deaging in Gd2(MoO4)3 by cyclic motion of a single planar domain wall. Journal of Applied Physics, 2005, 98, 074106.	2.5	10
237	Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6: Ce single crystals. Physics of the Solid State, 2011, 53, 2311-2315.	0.6	10
238	Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with ar ions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1934-1941.	3.0	10
239	Synthesis and investigation of stable copper nanoparticle colloids. Physics of the Solid State, 2014, 56, 1431-1437.	0.6	10
240	Domain wall orientation and domain shape in KTiOPO4 crystals. Applied Physics Letters, 2016, 109, 132901.	3.3	10
241	Physical properties of strontium barium niobate thin films prepared by polymeric chemical method. Ferroelectrics, 2016, 496, 177-186.	0.6	10
242	Morphology and piezoelectric characterization of thin films and microcrystals of ortho-carboranyl derivatives of (S)-glutamine and (S)-asparagine. Ferroelectrics, 2017, 509, 113-123.	0.6	10
243	Micro-Raman Imaging of Ferroelectric Domain Structures in the Bulk of PMN-PT Single Crystals. Crystals, 2019, 9, 65.	2.2	10
244	Phase distribution and corresponding piezoelectric responses in a morphotropic phase boundary Pb(Mg Nb)O3-PbTiO3 single crystal revealed by confocal Raman spectroscopy and piezo-response force microscopy. Journal of the European Ceramic Society, 2019, 39, 4131-4138.	5.7	10
245	Local atomic configurations, energy structure, and optical properties of implantation defects in Gd-doped silica glass: An XPS, PL, and DFT study. Journal of Alloys and Compounds, 2019, 796, 77-85.	5.5	10
246	Calibration of the in-plane PFM response by the lateral force curves. Ferroelectrics, 2020, 559, 15-21.	0.6	10
247	Precise control of the size and gap between gold nanocubes by surface-based synthesis for high SERS performance. Soft Matter, 2020, 16, 1857-1865.	2.7	10
248	Lead-free BaTiO3-based ceramics modified by Bi(Mg0.5Sn0.5)O3 with enhanced energy-storage performance and charge–discharge properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 3377-3390.	2.2	10
249	Morphotropic phase boundary in Sm-substituted BiFeO3 ceramics: Local vs microscopic approaches. Journal of Alloys and Compounds, 2021, 875, 159994.	5 . 5	10
250	Evolution of the fractal surface of amorphous lead zirconate-titanate films during crystallization. Physics of the Solid State, 1999, 41, 274-277.	0.6	9
251	Fast and Superfast Motion of Ferroelectric Domain Boundaries. Integrated Ferroelectrics, 2003, 59, 1493-1503.	0.7	9
252	Formation of Nanoscale Domain Structures and Abnormal Switching Kinetics in Lithium Niobate With Surface Layer Modified by Implantation of Copper Ions. Ferroelectrics, 2008, 374, 73-77.	0.6	9

#	Article	IF	Citations
253	Visualization of nanodomains in lithium niobate single crystals by scanning laser confocal Raman microscopy. Physics of the Solid State, 2011, 53, 109-113.	0.6	9
254	Micro- and Nanodomain Structures Produced by Pulse Laser Heating in Congruent Lithium Tantalate. Ferroelectrics, 2013, 443, 95-102.	0.6	9
255	Water Effect on Proton Exchange of X-cut Lithium Niobate in the Melt of Benzoic Acid. Ferroelectrics, 2015, 476, 84-93.	0.6	9
256	Probing ferroelectric behaviour in charge-transfer organic meta-nitroaniline. Applied Physics Letters, 2016, 109, .	3.3	9
257	Glycine nanostructures and domains in beta-glycine: computational modeling and PFM observations. Ferroelectrics, 2016, 496, 28-45.	0.6	9
258	Characterization of domain structure and domain wall kinetics in lead-free Sr ²⁺ doped K _{0.5} Na _{0.5} NbO ₃ piezoelectric ceramics by piezoresponse force microscopy. Ferroelectrics, 2017, 508, 77-86.	0.6	9
259	Single particle structure characterization of solid-state synthesized Li ₄ Ti ₅ O ₁₂ . Journal of Raman Spectroscopy, 2017, 48, 278-283.	2.5	9
260	Local switching in SBN:Ni single crystals with various initial domain states. Ferroelectrics, 2018, 525, 100-107.	0.6	9
261	Debye-like relaxation behavior and electric field induced dipole re-orientation of the 0.6BaTiO3-0.4Bi(Mg1/2Ti1/2)O3 ceramic. Ceramics International, 2018, 44, 922-930.	4.8	9
262	Piezoactive amino acid derivatives containing fragments of planar-chiral <i>ortho</i> -carboranes. Journal of Materials Chemistry C, 2018, 6, 8638-8645.	5.5	9
263	Direct observation of domain kinetics in rhombohedral PMN-28PT single crystals during polarization reversal. Applied Physics Letters, 2019, 115, .	3.3	9
264	Controlled Growth of Stable \hat{l}^2 -Glycine via Inkjet Printing. Crystal Growth and Design, 2019, 19, 3869-3875.	3.0	9
265	Supporting data and methods for the characterization of iron oxide nanoparticles conjugated with pH-(low)-insertion peptide, testing their cytotoxicity and analyses of biodistribution in SCID mice bearing MDA-MB231 tumor. Data in Brief, 2020, 29, 105062.	1.0	9
266	Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. Journal of Applied Physics, 2020, 127, 094103.	2.5	9
267	Different domain switching kinetics in tetragonal PMN-PT single crystal studied by in situ observation and current analysis. Journal of the European Ceramic Society, 2020, 40, 2922-2928.	5.7	9
268	Nanoscale Domain Structure in Relaxor PLZT x/65/35 Ceramics. Ferroelectrics, 2006, 340, 137-143.	0.6	8
269	Analysis of the Switching Data in Inhomogeneous Ferroelectrics. Ferroelectrics, 2007, 349, 163-170.	0.6	8
270	Study of the domain structure evolution in single crystals of relaxor ferroelectric Sr0.61Ba0.39Nb2O6:Ce1. Physics of the Solid State, 2010, 52, 346-351.	0.6	8

#	Article	IF	CITATIONS
271	3D Modeling of Domain Structure Evolution During Discrete Switching in Lithium Niobate. Ferroelectrics, 2010, 399, 68-75.	0.6	8
272	Fatigue Effect in Stoichiometric LiTaO ₃ Crystals Produced by Vapor Transport Equilibration. Ferroelectrics, 2012, 426, 142-151.	0.6	8
273	Electrical properties and local domain structure of LiNbO3 thin film grown by ion beam sputtering method. Acta Metallurgica Sinica (English Letters), 2013, 26, 630-634.	2.9	8
274	Analysis of the Switching Current Data in Uniaxial Ferroelectrics. Ferroelectrics, 2013, 443, 105-115.	0.6	8
275	Self-Organized Nanodomain Structures Arising in Lithium Tantalate and Lithium Niobate after Pulse Heating by Infrared Laser. Ferroelectrics, 2015, 476, 134-145.	0.6	8
276	Coffee Ring Effect During Drying of Colloid Drop: Experiment and Computer Simulation. Ferroelectrics, 2015, 476, 47-53.	0.6	8
277	Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric–Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning. ACS Applied Materials & Interfaces, 2018, 10, 42674-42680.	8.0	8
278	Linear optical properties and second-harmonic generation of (1- <i>x</i>)Pb(Mg _{1/3} Nb _{2/3})O ₃ â€" <i>x</i> PbTiO ₃ single crystals. Ferroelectrics, 2019, 542, 112-119.	0.6	8
279	Influence of composition gradients on heat induced initial domain structure in lithium tantalate. Ferroelectrics, 2019, 542, 13-20.	0.6	8
280	Analogy between growth of crystals and ferroelectric domains. Application of Wulff construction. Journal of Crystal Growth, 2019, 526, 125236.	1.5	8
281	Tailoring Ni and Sr2Mg0.25Ni0.75MoO6â°Î´Cermet Compositions for Designing the Fuel Electrodes of Solid Oxide Electrochemical Cells. Energies, 2019, 12, 2394.	3.1	8
282	Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 3466.	4.1	8
283	Submicron periodical poling in Z-cut lithium niobate thin films. Ferroelectrics, 2021, 576, 119-128.	0.6	8
284	<title>Fatigue effect in bulk ferroelectrics</title> ., 2002,,.		7
285	The Dynamics of Domain Walls Determined from Acoustic Emission Measurements. Ferroelectrics, 2003, 290, 207-215.	0.6	7
286	Field Induced Evolution of Nanoscale Structures in Relaxor PLZT Ceramics. Ferroelectrics, 2005, 316, 23-29.	0.6	7
287	Formation of Broad Domain Boundary in Congruent Lithium Niobate Modified by Proton Exchange. Ferroelectrics, 2015, 476, 146-155.	0.6	7
288	Is it possible to enhance the organism's resistance to toxic effects of metallic nanoparticles?. Toxicology, 2015, 337, 79-82.	4.2	7

#	Article	IF	Citations
289	Nonlinear Raman–Nath diffraction of femtosecond laser pulses in a 2D nonlinear photonic crystal. Optics Letters, 2015, 40, 4002.	3.3	7
290	Self-assembled domain structures: From micro- to nanoscale. Journal of Advanced Dielectrics, 2015, 05, 1550015.	2.4	7
291	Nanoparticles for treatment of atherosclerosis: challenges of plasmonic photothermal therapy in translational studies. Future Cardiology, 2018, 14, 109-114.	1.2	7
292	Self-organized domain formation by moving the biased SPM tip. Ferroelectrics, 2019, 542, 70-76.	0.6	7
293	Synthesis of nanocomposite with a core—shell structure based on Fe3O4 magnetic nanoparticles and iron glycerolate. Russian Chemical Bulletin, 2019, 68, 1178-1182.	1.5	7
294	Influence of hot water treatment during laser ablation in liquid on the shape of PbO nanoparticles. Applied Surface Science, 2019, 483, 835-839.	6.1	7
295	Achieve single domain state in (111)-oriented rhombohedral phase PMN-PT relaxor ferroelectric single crystals for electro-optical application. Applied Physics Letters, 2019, 115, .	3.3	7
296	Microâ€Raman study of crichtonite group minerals enclosed into mantle garnet. Journal of Raman Spectroscopy, 2020, 51, 1493-1512.	2.5	7
297	Domain shapes in bulk uniaxial ferroelectrics. Ferroelectrics, 2020, 569, 251-265.	0.6	7
298	Strain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3thin films. Applied Materials Today, 2020, 20, 100740.	4.3	7
299	Dynamics of incoherent domain walls in gadolinium molybdate. Ferroelectrics, 1992, 130, 341-346.	0.6	7
300	Near-infrared second-harmonic generation versus mid-infrared optical parametric oscillation in multigrating and fan-out PPMgO:LN structures pumped by a repetitively pulsed 2-νm Tm ³⁺ :Lu ₂ O ₃ -ceramics laser. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1674.	2.1	7
301	Looking for Biological Protectors against Adverse Health Effects of Some Nanoparticles that Can Pollute Workplace and Ambient Air (A Summary of Authors' Experimental Results). Journal of Environmental Protection, 2017, 08, 844-866.	0.7	7
302	Investigation of domain structure in lead germanate by cleavage method. Ferroelectrics, 1993, 140, 101-106.	0.6	6
303	Switching kinetics in epitaxial PZT thin films. Microelectronic Engineering, 1995, 29, 153-157.	2.4	6
304	Motion of a planar domain wall in the ferroelectric-ferroelastic gadolinium molybdate. Physics of the Solid State, 1999, 41, 112-115.	0.6	6
305	Barkhausen jumps in the motion of a single ferroelectric domain wall. Physics of the Solid State, 2001, 43, 1128-1131.	0.6	6
306	Dynamic Stability of Metal-Nanocluster Composites Based on LiNbO ₃ Under Heavy-Ion Bombardment. Ferroelectrics, 2008, 373, 127-132.	0.6	6

#	Article	IF	CITATIONS
307	Polarization Reversal in Crystals of Congruent Lithium Tantalate at Elevated Temperatures. Ferroelectrics, 2012, 439, 40-46.	0.6	6
308	Double Loops Formation in Sr _{0.75} Ba _{0.25} Nb ₂ O ₆ Single Crystals in Relaxor Phase. Ferroelectrics, 2013, 443, 116-123.	0.6	6
309	Temperature Dependence of Surface Polar State of SrTiO ₃ Ceramics Obtained by Piezoresponse Force Microscopy. Ferroelectrics, 2015, 477, 1-8.	0.6	6
310	Growth of isolated domains induced by focused ion beam irradiation in congruent lithium niobate. Ferroelectrics, 2017, 508, 16-25.	0.6	6
311	Built-in bias in Gd-doped ceria films and its implication for electromechanical actuation devices. Solid State Ionics, 2018, 327, 47-51.	2.7	6
312	Abnormal kinetics of domain structure in KTA single crystals. Applied Physics Letters, 2019, 115, 212901.	3.3	6
313	Domain Switching by Electron Beam Irradiation in SBN61:Ce Single Crystals Covered by Dielectric Layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 191-196.	3.0	6
314	New insights on Raman spectrum of Kâ€bearing tourmaline. Journal of Raman Spectroscopy, 2020, 51, 1415-1424.	2.5	6
315	Barkhausen pulses caused by domain merging in congruent lithium niobate. Applied Physics Letters, 2020, 117, .	3.3	6
316	Local electromechanical response in doped ceria: Rigorous analysis of the phase and amplitude. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1478-1485.	2.9	6
317	Chemical Solution Deposition of BiFeO3 Films with Layer-by-Layer Control of the Coverage and Composition. Coatings, 2020, 10, 438.	2.6	6
318	Local electronic transport across probe/ionic conductor interface in scanning probe microscopy. Ultramicroscopy, 2021, 220, 113147.	1.9	6
319	Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology, 2021, 15, 205-222.	3.0	6
320	Tilt control of the charged domain walls created by local switching on the non-polar cut of MgO doped lithium niobate single crystals. Ferroelectrics, 2021, 574, 16-22.	0.6	6
321	Design of SiO2/aminopropylsilane-modified magnetic Fe3O4 nanoparticles for doxorubicin immobilization. Russian Chemical Bulletin, 2021, 70, 987-994.	1.5	6
322	Micro-Raman domain imaging in calcium orthovanadate single crystals. Ferroelectrics, 2021, 576, 85-93.	0.6	6
323	Submicron periodical poling by local switching in ion sliced lithium niobate thin films with a dielectric layer. Ceramics International, 2021, 47, 32900-32904.	4.8	6
324	Influence of Humidity on Local Polarization Reversal in a Rb:KTP Single Crystal. ACS Applied Electronic Materials, 2021, 3, 260-266.	4.3	6

#	Article	IF	CITATIONS
325	Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy. Small Methods, 2022, 6, 2101289.	8.6	6
326	Crystallization kinetics of amorphous ferroelectric films. Ferroelectrics, 1997, 196, 183-186.	0.6	5
327	<title>Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate</title> ., 2000, , .		5
328	Kinetics of fatigue effect. Integrated Ferroelectrics, 2001, 33, 117-132.	0.7	5
329	In situsynchrotron x-ray diffraction study of electrical field induced fatigue in Pt/PbZr0.45Ti0.55O3/Pt ferroelectric capacitors. Journal of Physics Condensed Matter, 2005, 17, 7681-7688.	1.8	5
330	AFM Study of the Bulk Photorefractive Periodically Poled LiNbO3:Y:Fe Crystal. Ferroelectrics, 2006, 341, 131-136.	0.6	5
331	Direct Study of Super-Fast Domain Kinetics in Lead Germanate Single Crystals. Ferroelectrics, 2006, 341, 67-74.	0.6	5
332	Polarization Reversal in Relaxor PZN-PT Single Crystals. Ferroelectrics, 2010, 398, 115-126.	0.6	5
333	Polarization Reversal in MgO:LiNbO ₃ Single Crystals Modified by Plasma-Source Ion Irradiation. Ferroelectrics, 2012, 439, 20-32.	0.6	5
334	Synthesis of stable silver colloids by laser ablation in water. Proceedings of SPIE, 2013, , .	0.8	5
335	The Cation Sublattice Ordering in the Ferroelectric LiNbO3:Zn Single Crystals. Ferroelectrics, 2014, 462, 80-86.	0.6	5
336	Charged Domain Walls in Lithium Niobate with Inhomogeneous Bulk Conductivity. Ferroelectrics, 2015, 476, 109-116.	0.6	5
337	Spin coating formation of self-assembled ferroelectric \hat{l}^2 -glycine films. Ferroelectrics, 2016, 496, 10-19.	0.6	5
338	Collinear and isotropic diffraction of laser beam and incoherent light on periodically poled domain structures in lithium niobate. Ferroelectrics, 2016, 496, 134-142.	0.6	5
339	Linear diffraction of light waves in periodically poled lithium niobate crystal. Ferroelectrics, 2017, 508, 49-57.	0.6	5
340	High-speed precise cell patterning by pulsed electrohydrodynamic jet printing. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012013.	0.6	5
341	Analysis of the switching current peaks in KTP during superfast domain wall motion. Ferroelectrics, 2018, 525, 11-17.	0.6	5
342	Domain structure evolution in relaxor PLZT 8/65/35 ceramics after chemical etching and electron beam irradiation. Ferroelectrics, 2018, 525, 83-92.	0.6	5

#	Article	IF	Citations
343	Influence of the domain structure on piezoelectric and dielectric properties of relaxor SBN single crystals. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012031.	0.6	5
344	Charged domain walls in lithium tantalate with compositional gradients produced by partial VTE process. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012015.	0.6	5
345	A combined Raman spectroscopy, cathodoluminescence, and electron backscatter diffraction study of kyanite porphyroblasts from diamondiferous and diamondâ€free metamorphic rocks (Kokchetav massif). Journal of Raman Spectroscopy, 2020, 51, 1425-1437.	2.5	5
346	In Situ Imaging of Domain Structure Evolution in LaBGeO5 Single Crystals. Crystals, 2020, 10, 583.	2.2	5
347	Dense ferroelectric-ferroelastic domain structures in rhombohedral PMN-28PT single crystals. Applied Physics Letters, 2020, 116, .	3.3	5
348	Domain patterning of non-polar cut lithium niobate by focused ion beam. Ferroelectrics, 2020, 559, 66-76.	0.6	5
349	Study of the electric field-induced domain structure transformation in BaTiO ₃ ceramics by high resolution methods. Ferroelectrics, 2020, 559, 83-92.	0.6	5
350	Domain patterning in lithium niobate using spontaneous backswitching., 1999,,.		5
351	Low loss optical waveguides fabricated in LiTaO3 by swift heavy ion irradiation. Optics Express, 2019, 27, 8696.	3.4	5
352	Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection. Laser Physics Letters, 2021, 18, 116201.	1.4	5
353	New Data on Variously Directed Dose-Response Relationships and the Combined Action Types for Different Outcomes of <i>in Vitro</i> Nanoparticle Cytotoxicity. Dose-Response, 2021, 19, 155932582110524.	1.6	5
354	In Situ Investigation of Crystallization Kinetics in Pzt Films by Light Scattering. Materials Research Society Symposia Proceedings, 1996, 433, 351.	0.1	4
355	Fatigue in epitaxial lead zirconate titanate films. Physics of the Solid State, 1997, 39, 609-610.	0.6	4
356	Fracture of Gd2 (MoO4)3 single crystals. Journal of Materials Science, 1999, 34, 241-246.	3.7	4
357	Electric Field Poling of Lithium Niobate Crystals after Proton-Exchanged Channel Waveguide Fabrication. Ferroelectrics, 2012, 441, 9-16.	0.6	4
358	Patterning and nanoscale characterization of ferroelectric amino acid beta-glycine., 2015,,.		4
359	Fabrication of SPE Waveguides on PPLN: Formation of Nanodomains and Their Impact on the SHG Efficiency. Ferroelectrics, 2015, 476, 127-133.	0.6	4
360	Investigation of domain kinetics in congruent lithium niobate modified by proton exchange. Ferroelectrics, 2016, 496, 110-119.	0.6	4

#	Article	IF	CITATIONS
361	Domain kinetics in LiNbO ₃ and LiTaO ₃ with modified bulk conductivity. Ferroelectrics, 2016, 496, 79-84.	0.6	4
362	Investigation of polarization reversal and analysis of switching current data in KTP single crystals. Ferroelectrics, 2017, 508, 1-8.	0.6	4
363	Piezoelectric properties and Young's moduli of diphenylalanine microtubes—oxide nanoparticles composites. Ferroelectrics, 2018, 525, 146-155.	0.6	4
364	Electrically controllable diffraction of light on periodic domain structures in ferroelectric crystals. Ferroelectrics, 2019, 542, 58-63.	0.6	4
365	Indentation induced local polarization reversal in La doped BiFeO ₃ ceramics. Ferroelectrics, 2019, 541, 1-9.	0.6	4
366	An Investigative Study on the Effect of Pre-Coating Polymer Solutions on the Fabrication of Low Cost Anti-Adhesive Release Paper. Nanomaterials, 2020, 10, 1436.	4.1	4
367	The effect of water molecules on elastic and piezoelectric properties of diphenylalanine microtubes. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1474-1477.	2.9	4
368	Piezoelectric Actuation of Graphene-Coated Polar Structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2142-2147.	3.0	4
369	Local Piezoelectric Properties of Doped Biomolecular Crystals. Materials, 2021, 14, 4922.	2.9	4
370	Uptake of Some Metallic Nanoparticles by, and their Impact on Pulmonary Macrophages in Vivo as Viewed by Optical, Atomic Force, and Transmission Electron Microscopy. Journal of Nanomedicine & Nanotechnology, 2011, 03, .	1.1	4
371	SOME PECULIARITIES OF THE ORGANISM'S RESPONSES TO A LONG-TERM INHALATION OF SILICA-CONTAININ SUBMICRON (PREDOMINANTLY, NANOSCALE) PARTICLES IN A REAL INDUSTRIAL AEROSOL. Toxicological Review, 2017, , 17-26.	IG 0.2	4
372	Enhanced energy-storage properties in lead-free (Bi0.5Na0.5)TiO3-based dielectric ceramics via glass additive and viscous polymer rolling process. Ceramics International, 2022, 48, 15711-15720.	4.8	4
373	Field induced evolution of heterophase structure in PLZT relaxor ceramics. Ferroelectrics, 1997, 199, 159-171.	0.6	3
374	Temperature Behavior of the Order Parameter in Pb[sub 5]Ge[sub 3]O[sub 11]. Physics of the Solid State, 2001, 43, 1952.	0.6	3
375	X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate and lithium niobate. Applied Physics Letters, 2002, 80, 1037-1039.	3.3	3
376	Failure Analysis of FeCAPs. Electrical Behaviour Under Synchrotron X-Ray Irradiation. Integrated Ferroelectrics, 2004, 61, 89-95.	0.7	3
377	Effect of Penetrating Irradiation on Polarization Reversal in PZT Thin Films. Ferroelectrics, 2006, 340, 161-167.	0.6	3
378	Study of Field-Induced Evolution of the Domain Geometry in Lithium Niobate and Lithium Tantalate Single Crystals by In Situ Optical Method. Ferroelectrics, 2008, 374, 78-87.	0.6	3

#	Article	IF	Citations
379	Shape of Local Hysteresis Loops Measured by Means of Piezoresponse Force Microscopy. Ferroelectrics, 2010, 398, 26-33.	0.6	3
380	Study of Ferroelectric Domain Structure of Barium Strontium Titanate Based Glass-Ceramics. Ferroelectrics, 2013, 442, 131-136.	0.6	3
381	Formation of self-assembled nanodomain structures in single crystals of uniaxial ferroelectrics lithium niobate, lithium tantalate and strontium–barium niobate. Journal of Advanced Dielectrics, 2014, 04, 1450006.	2.4	3
382	Surface-Enhanced Raman Scattering Using Silver Nanoparticles Produced by Laser Ablation in Liquid. Ferroelectrics, 2015, 477, 54-62.	0.6	3
383	Increase and Relaxation of Abnormal Conduction Current in Lithium Niobate Crystals with Charged Domain Walls. Ferroelectrics, 2015, 476, 94-104.	0.6	3
384	Origin of Jump-Like Dynamics of the Plane Domain Wall in Ferroelectrics. Ferroelectrics, 2015, 476, 17-27.	0.6	3
385	Formation of self-assembled domain structures in single crystals of lithium tantalate with artificial dielectric layer. Ferroelectrics, 2016, 496, 92-101.	0.6	3
386	Topological instability of the ferroelectric domain wall caused by screening retardation. Ferroelectrics, 2017, 508, 65-73.	0.6	3
387	Selective synthesis of higher manganese silicides: a new Mn17Si30 phase, its electronic, transport, and optical properties in comparison with Mn4Si7. Journal of Materials Science, 2018, 53, 7571-7594.	3.7	3
388	Investigation of domain structure evolution during zero-field temperature treatment in 0.67PMN-0.33PT single crystals. Ferroelectrics, 2018, 525, 114-122.	0.6	3
389	Domain structure imaging in PMN-PT crystals using channelling-contrast backscattered electron microscopy. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012038.	0.6	3
390	Imprint behavior and polarization relaxation of PLZT thin films. Ferroelectrics, 2018, 533, 10-18.	0.6	3
391	Domain kinetics during polarization reversal in $36\hat{A}^\circ$ Y-cut congruent lithium niobate. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012024.	0.6	3
392	Relaxation processes in barium strontium titanate glassâ€eramics by thermally simulated depolarization current. Journal of the American Ceramic Society, 2018, 102, 901.	3.8	3
393	Analysis of Switching Current Data during Polarization Reversal in KTP Single Crystals with Surface Dielectric Layer. Crystals, 2018, 8, 315.	2.2	3
394	E-beam domain patterning in thin plates of MgO-doped LiNbO ₃ . Ferroelectrics, 2019, 542, 85-92.	0.6	3
395	Diffraction of Light on a Regular Domain Structure with Inclined Walls in MgO:LiNbO3. JETP Letters, 2019, 110, 178-182.	1.4	3
396	Influence of lanthanum substitution on microstructure and impedance behavior of barium strontium titanate glass-ceramics. Journal of Applied Physics, 2019, 126, 074101.	2.5	3

#	Article	IF	CITATIONS
397	Domain structure formation by electron beam irradiation in lithium niobate crystals at elevated temperatures. Applied Physics Letters, 2019, 115, 092903.	3.3	3
398	Experimental assessments of metallic and metal oxide nanoparticles' toxicity. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012037.	0.6	3
399	Mid-IR Optical Parametric Oscillator Based on Periodically Polled LiNbO3 Pumped by Tm3+:Lu2O3 Ceramic Laser. Atmospheric and Oceanic Optics, 2019, 32, 724-729.	1.3	3
400	An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology, 2020, 14, 788-806.	3.0	3
401	Polarization reversal in lithium niobate with inhomogeneous stoichiometry deviation. Ferroelectrics, 2020, 559, 102-108.	0.6	3
402	Modification of chemically and physically obtained Fe3O4 magnetic nanoparticles with l-Lys for cell labeling. Russian Chemical Bulletin, 2021, 70, 1199-1208.	1.5	3
403	Advanced Large-Scale Nanofabrication Route for Ultrasensitive SERS Platforms Based on Precisely Shaped Gold Nanostructures. Nanomaterials, 2021, 11, 1806.	4.1	3
404	Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3., 2006,, 199-210.		3
405	Plasmonics for Treatment of Atherosclerosis: Results of NANOM-FIM Trial. Journal of Nanomedicine & Nanotechnology, 2012, 04, .	1.1	3
406	As-Grown Domain Structure in Calcium Orthovanadate Crystals. Crystals, 2021, 11, 1508.	2.2	3
407	Generation of flicker-Noise during motion of strictly oriented domain walls. Ferroelectrics, 2002, 265, 145-151.	0.6	2
408	Generation of Picoliter Droplets by Pyroelectrodynamic Effect. Ferroelectrics, 2015, 476, 156-162.	0.6	2
409	Polarization Reversal Process in MgO Doped Congruent Lithium Tantalate Single Crystals. Ferroelectrics, 2015, 476, 57-68.	0.6	2
410	Formation of Self-Assembled Domain Structures in MgOSLT. Ferroelectrics, 2015, 476, 76-83.	0.6	2
411	Formation of self-organized nanodomain structures in lithium niobate after pulsed infrared laser heating. Physics of the Solid State, 2015, 57, 2020-2024.	0.6	2
412	Screen-printed BiFeO3 thick films on noble metal foils. Ferroelectrics, 2016, 496, 196-203.	0.6	2
413	Frequency locking effect at polarization reversal of the ferroelectric capacitor. Ferroelectrics, 2016, 496, 85-91.	0.6	2
414	Formation of self-assembled pattern of glycine microcrystals: experiment and computer simulation. Ferroelectrics, 2016, 496, 20-27.	0.6	2

#	Article	IF	CITATIONS
415	Formation of the nanodomain structures after pulse laser heating in lithium tantalate: experiment and computer simulation. Ferroelectrics, 2016, 496, 120-127.	0.6	2
416	Dielectric/ferroelectric and phase transition properties of PLZT ceramics. Ferroelectrics, 2016, 496, 240-249.	0.6	2
417	Periodical poling of LiNbO ₃ :MgO by electron beam. Ferroelectrics, 2017, 508, 9-15.	0.6	2
418	Polarization reversal and domain kinetics in PMN-30PT single crystals. Ferroelectrics, 2017, 508, 31-39.	0.6	2
419	Deposition of droplets by pyroelectric field created by lithium tantalate with tailored domain structure. Ferroelectrics, 2017, 508, 58-64.	0.6	2
420	Effect of surface disorder on the domain structure of PLZT ceramics. Ferroelectrics, 2017, 509, 19-26.	0.6	2
421	Local Young's moduli of as-grown and annealed diphenylalanine nanotubes. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012012.	0.6	2
422	Posterolateral Spiral-Shaped One Third Tubular Plate Stabilization for a Long Spiral Fracture of the Lateral Malleolus. Journal of Foot and Ankle Surgery, 2018, 57, 579-582.	1.0	2
423	Local electromechanical characterization of Pr doped BiFeO3 ceramics. Ferroelectrics, 2018, 525, 64-75.	0.6	2
424	Evolution of domain structure and formation of charged domain walls during polarization reversal in lithium niobate single crystals modified by vacuum annealing. Physics of the Solid State, 2018, 60, 103-107.	0.6	2
425	Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a ${\cosh^{(2)}}$ photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15, 045401.	1.4	2
426	Main results obtained in a series of animal experiments for the assessment of the organism's responses to metallic nanoparticles exposure. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012025.	0.6	2
427	The effect of machining on domain configuration in [001]-oriented tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Journal of Applied Physics, 2018, 124, 173103.	2.5	2
428	Switching current shape analysis in LBGO single crystals. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012001.	0.6	2
429	Formation of the quasi-regular stripe nanodomain structures in lithium tantalate by scanning laser heating. Ferroelectrics, 2019, 541, 61-65.	0.6	2
430	Effect of ferroelectric domains on electric properties of single layer graphene. Ferroelectrics, 2019, 542, 93-101.	0.6	2
431	Creation of nanoparticles and surface nanostructures of alumina by hot water treatment. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012051.	0.6	2
432	Dumortierite and tourmaline from the Barchiâ€Kol diamondâ€bearing kyanite gneisses (Kokchetav massif): A Raman spectroscopic study and petrological implications. Journal of Raman Spectroscopy, 2020, 51, 1839-1848.	2.5	2

#	Article	IF	Citations
433	Zircon from diamondiferous kyanite gneisses of the Kokchetav massif: Revealing growth stages using an integrated cathodoluminescence, Raman spectroscopy and electron microprobe approach. Mineralogical Magazine, 2020, 84, 949-958.	1.4	2
434	Domain structure evolution under multiple pulse heating of lithium niobate by infrared laser. Ferroelectrics, 2020, 560, 79-85.	0.6	2
435	Forward domain growth on the non-polar cut of lithium niobate crystal during irradiation by focused ion beam. Ferroelectrics, 2021, 574, 92-100.	0.6	2
436	Local Polarization Reversal by Ion Beam Irradiation in SBN Single Crystals Covered by Dielectric Layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2824-2831.	3.0	2
437	Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose-Response, 2021, 19, 155932582098216.	1.6	2
438	BIOLOGICAL PROPHYLAXIS IN THE SYSTEM OF THE MANAGEMENT OF OCCUPATIONAL RISK DUE TO EXPOSURE OF METAL-CONTAINING NANOPARTICLES. Gigiena I Sanitariia, 2019, 96, 1187-1191.	0.5	2
439	Some aspects of metal oxide nanoparticles toxicity assessment on cell cultures as exemplified by NiO and Mn3O4. Toxicological Review, 2017, , 35-43.	0.2	2
440	COMPARATIVE AND COMBINED TOXICITY OF ALUMINIUM, TITANIUM AND SILICON OXIDES NANOPARTICLES AND ITS ALLEVIATION WITH THE COMPLEX OF BIOPROTECTORS. Toxicological Review, 2018, , 18-27.	0.2	2
441	Unusual domain growth during local switching in triglycine sulfate crystals. Applied Physics Letters, 2021, 119, 262902.	3.3	2
442	Evolution of regular heterophase structure near transition point. Ferroelectrics, 1996, 185, 13-16.	0.6	1
443	The Compound Sternal Flap for Laryngeal Reconstruction. Annals of Plastic Surgery, 2000, 45, 193-198.	0.9	1
444	Phase transformation kinetics induced in thin sol-gel PZT films under thermal annealing. Physics of the Solid State, 2001, 43, 902-907.	0.6	1
445	Composition and submicron structure of thin films of supersaturated Zn x Pb1 \hat{a} x S solid solutions. Technical Physics Letters, 2008, 34, 472-474.	0.7	1
446	The Domain Kinetics in Congruent Lithium Niobate Modified by Low and High Energy Ion Irradiation. Ferroelectrics, 2012, 441, 17-24.	0.6	1
447	Study of Domain Kinetics in SBN Single Crystals in Electric Field Applied by Suspension of Silver Nanoparticles. Ferroelectrics, 2013, 443, 45-53.	0.6	1
448	Study of Nanoscale Domain Structure and Elastic Response of Lead-Free Piezoelectric Ceramics by Scanning Probe Microscopy. Ferroelectrics, 2013, 442, 123-130.	0.6	1
449	Piezoelectric Response from Porous Ferroelectric Ceramics at Low Drive Voltage. Ferroelectrics, 2015, 475, 96-103.	0.6	1
450	Optical parametric oscillator based on the periodically poled MgO:LN crystal with $4.1 \hat{A} \hat{I} \frac{1}{4} \text{m}$ wavelength and varied pulse duration. Ferroelectrics, 2016, 496, 128-133.	0.6	1

#	Article	IF	CITATIONS
451	Energy Harvesting with Biomaterials. , 2016, , 297-316.		1
452	Experimental investigations of 3 mm aperture PPLN structures. Journal of Physics: Conference Series, 2017, 793, 012014.	0.4	1
453	Formation of self-assembled micro- and nano-domain structures in uniaxial ferroelectrics. IOP Conference Series: Materials Science and Engineering, 2017, 192, 012006.	0.6	1
454	In situ visualization of domain structure evolution during field cooling in 0.67PMN-0.33PT single crystal. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012025.	0.6	1
455	Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis. Journal of Physics: Conference Series, 2017, 879, 012001.	0.4	1
456	Synthesis and piezoelectric properties of N-phthaloylglutamic acid derivatives. Russian Chemical Bulletin, 2017, 66, 1439-1445.	1.5	1
457	Thermal excitation contribution into the electromechanical performance of self-supported Gd-doped ceria membranes. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012008.	0.6	1
458	Study of structural colour of Hebomoia glaucippe butterfly wing scales. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012014.	0.6	1
459	Domain wall shape instability in congruent lithium tantalate during switching by ion beam. Ferroelectrics, 2018, 525, 28-36.	0.6	1
460	Generation of the second harmonic in ridge waveguides formed in periodically poled lithium niobate. Quantum Electronics, 2018, 48, 717-719.	1.0	1
461	Microstructure of (Ba0.75,Sr0.25)TiO3 based glass-ceramics doped by Mn. IOP Conference Series: Materials Science and Engineering, 2018, 443, 012037.	0.6	1
462	The bulk screening field in nonstoichiometric lithium tantalate single crystals. Ferroelectrics, 2019, 541, 30-38.	0.6	1
463	Temperature and electric field treatment of the rhombohedral PMN-PT single crystals. Ferroelectrics, 2019, 541, 66-73.	0.6	1
464	Annealing stability of the domain structure in periodically poled MgO doped lithium niobate single crystals. Ferroelectrics, 2019, 542, 45-51.	0.6	1
465	Tip-induced domain growth in the non-polar cuts of SBN:Ce single crystals. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012049.	0.6	1
466	Fracture strength and fatigue endurance in Gd-doped ceria thermal actuators. Sensors and Actuators A: Physical, 2020, 304, 111885.	4.1	1
467	Magnetoactive Compound Based on Humic Acid and Magnetite as a Sorbent for Heavy Metals. Russian Journal of Applied Chemistry, 2020, 93, 1366-1371.	0.5	1
468	Influence of growth temperature of KTiOAsO4 single crystals on their physicochemical parameters and formation of domain structures. Quantum Electronics, 2020, 50, 788-792.	1.0	1

#	Article	IF	CITATIONS
469	Multisystemic damage to mitochondrial ultrastucture as an integral measure of the comparative in vivo cytotoxicity of metallic nanoparticles. IOP Conference Series: Materials Science and Engineering, 2020, 918, 012119.	0.6	1
470	The domain structure and local switching of LiNbO3 thin films deposited on Si(001) by radio-frequency magnetron sputtering. Ferroelectrics, 2020, 560, 86-94.	0.6	1
471	Analysis of switching current data in KTA single crystals. Ferroelectrics, 2020, 559, 1-7.	0.6	1
472	Transformation of initial domain structure by ac electric field in lithium tantalate crystals with composition gradient. Ferroelectrics, 2021, 574, 136-143.	0.6	1
473	Formation of submicron stripe domain ensembles during polarization reversal in Rb doped KTP crystal covered by dielectric layer. Ferroelectrics, 2021, 574, 101-108.	0.6	1
474	The input of Barkhausen pulses to the switching current in congruent lithium niobate. Ferroelectrics, 2021, 574, 156-163.	0.6	1
475	Second harmonic generation in periodically poled MgO:LN crystal with 2 µm period created by e-beam irradiation. Ferroelectrics, 2021, 576, 50-54.	0.6	1
476	Evolution of the domain structure during polarization reversal in relaxor SBN single crystals studied by ÄŒerenkov-type second harmonic generation microscopy. Ferroelectrics, 2021, 576, 75-84.	0.6	1
477	Nonlinear Characterization of Waveguide Index Profile: Application to Soft-Proton-Exchange in LiNbO\$_3\$. Journal of Lightwave Technology, 2021, 39, 4695-4699.	4.6	1
478	General toxic and cardiovascular toxic impact of cadmium oxide nanoparticles. Gigiena I Sanitariia, 2021, 99, 1346-1352.	0.5	1
479	MANIFESTATIONS OF SUBACUTE SYSTEMIC TOXICITY OF LEAD OXIDE NANOPARTICLES IN RATS AFTER AN INHALATION EXPOSURE. Toxicological Review, 2021, , 3-13.	0.2	1
480	EXPERIMENTAL AND MATHEMATICAL MODELING OF THE IRON OXIDE NANOPARTICLE PULMONARY RETENTION AT LONG-TERM LOW-LEVEL INHALATION EXPOSURE. Toxicological Review, 2017, , 12-21.	0.2	1
481	NEW DATA ON THE QUESTION OF INFORMATIVENESS OF EXPERIMENTS ON CELL CULTURES FOR ASSESSMENT OF COMPARATIVE AND COMBINED TOXICITY OF METAL OXIDE NANOPARTICLES. Toxicological Review, 2019, , 16-22.	0.2	1
482	Observation of the Photoinduced Conductivity in a Regular Domain Structure with Tilted Walls in MgO:LiNbO3 at a Wavelength of 632.8 nm at Bragg Diffraction. JETP Letters, 2020, 112, 602-606.	1.4	1
483	Tip-induced domain growth on the non-polar cut of lithium niobate with various stoichiometry deviations. Journal of Applied Physics, 2022, 131, .	2.5	1
484	Morphotropic phase boundary in the BFO-BTO solid solutions: role of synthesis conditions. Ferroelectrics, 2022, 590, 91-98.	0.6	1
485	Anisotropic growth of domain rays in lithium niobate crystal induced by IR laser scanning. Ferroelectrics, 2022, 592, 45-51.	0.6	1
486	Shape of charged domain walls in bidomain lithium tantalate plates with composition gradients. Ferroelectrics, 2022, 592, 26-36.	0.6	1

#	Article	IF	Citations
487	Domain growth in LiNbO < sub > 3 < /sub > with surface layer modified by soft proton exchange. Ferroelectrics, 2022, 592, 64-71.	0.6	1
488	Analysis of Barkhausen pulse shapes in lithium niobate single crystals. Ferroelectrics, 2022, 592, 1-11.	0.6	1
489	Crystallization Kinetics and Texture of Sol-Gel PZT Thin Films. Materials Research Society Symposia Proceedings, 1998, 541, 363.	0.1	0
490	Direct-Write E-beam Submicron Domain Engineering in LiNbO3 Thin Films Grown by Liquid Phase Epitaxy. Materials Research Society Symposia Proceedings, 2003, 784, 1081.	0.1	0
491	Kinetics of polarization reversal in irradiated thin PZT films. Physics of the Solid State, 2006, 48, 1174-1176.	0.6	0
492	Rearrangements on the Surface of Heavy-Ion-Implanted LiNbO ₃ . Ferroelectrics, 2010, 398, 42-48.	0.6	0
493	Is Health Risk Due to Nanoparticles Unusually Great and Are They Really Ignored by Physiological Defense Mechanisms?. Epidemiology, 2011, 22, S254.	2.7	0
494	Theoretical Analysis of the Difference-Frequency Generation of Terahertz Radiation in Lithium Niobate with Regular Domain Structure. Ferroelectrics, 2012, 438, 68-75.	0.6	0
495	Second harmonic generation of femtosecond laser pulses under Raman-Nath nonlinear diffraction. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 190-193.	0.6	0
496	Nanoscale polarization relaxation and piezoelectric properties of SBN thin films. , 2016, , .		0
497	Ferroelectricity in Synthetic Biomaterials: Hydroxyapatite and Polypeptides. , 2016, , 149-166.		0
498	Periodically poled MgO doped LiNbO $<$ inf $>$ 3 $<$ /inf $>$ and LiTaO $<$ inf $>$ 3 $<$ /inf $>$ for coherent light frequency conversion. , 2016, , .		0
499	High Resolution Piezoresponse Force Microscopy Study of Self-Assembled Peptide Nanotubes. MRS Advances, 2017, 2, 63-69.	0.9	0
500	Electric field distribution during polarization reversal in lithium niobate with inhomogeneous bulk conductivity. Ferroelectrics, 2017, 508, 26-30.	0.6	0
501	Physical properties and reentrant behavior in PLZT thin films. Ferroelectrics, 2017, 509, 1-9.	0.6	0
502	Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries. Journal of Physics: Conference Series, 2017, 867, 012017.	0.4	0
503	The phase-field modeling of the self-organized phase growth with three-fold symmetry. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012027.	0.6	0
504	Shape instability of the moving wavy domain wall in uniaxial ferroelectric. Ferroelectrics, 2018, 525, 123-131.	0.6	0

#	Article	IF	CITATIONS
505	Polarization reversal in lithium niobate using electrodes of dendrite shape created by drying drops of protein-NaCl solution. Ferroelectrics, 2018, 525, 161-167.	0.6	0
506	Forward domain growth in 36° Y-cut congruent lithium niobate. Ferroelectrics, 2019, 541, 115-122.	0.6	0
507	Raman study of pyroelectric and injected charge induced fields in PLZT 8/65/35 ceramics. Ferroelectrics, 2019, 542, 102-111.	0.6	0
508	Periodically Poled MgO:LiNbO3, MgO:LiTaO3 and KTiOPO4 Crystals for Laser Light Frequency Conversion. , 2019, , .		0
509	Fabrication of superhydrophobic and superoleophilic teflon surfaces using irradiation by nanosecond infrared laser. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012057.	0.6	0
510	Formation of the maze domain structures in lithium niobate as a result of multiple pulse irradiation by infrared laser. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012052.	0.6	0
511	Organism's responses to a long-term inhalation of silica-containing submicron particles of an industrial aerosol. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012054.	0.6	0
512	Microstructure of barium strontium titanate based glass-ceramics doped by Ce and La. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012056.	0.6	0
513	Tunable LiNbO3-Based Diffraction Optical Elements for Control of Coherent Light., 2019,,.		0
514	Synthesis and characterization of Fe doped BCZT piezoceramic. AIP Conference Proceedings, 2020, , .	0.4	0
515	Local polarization reversal in $36 \hat{A}^\circ$ Y-cut congruent lithium niobate by focused electron beam: forward domain growth. Ferroelectrics, 2020, 560, 21-26.	0.6	0
516	Interferometric measurements of graphene-based membranes for micromechanical applications. Ferroelectrics, 2020, 560, 95-101.	0.6	0
517	Domain splitting in lithium niobate with surface dielectric layer. Ferroelectrics, 2020, 559, 8-14.	0.6	O
518	Perturbations of a dielectric tensor induced by domain walls of periodic domain structures in ferroelectric crystals: contribution to the Bragg diffraction of light waves. Laser Physics, 2020, 30, 025401.	1.2	0
519	ĐŸĐ¾Đ»Đ²Đμаа Đ² Đ½Đ°ÑƒĐ°Đμ. ĐžÑ, Đ»Đ°Đ±Đ¾Ñ€Đ°Ñ,Đ¾Ñ€Đ¸Đ¸ ÑĐμĐ³Đ½ĐμÑ,Đ¾ÑĐ»ĐμаÑ,Ñ€Đ¸t	Ე ºĐ. ¾Đ² E)º ึ
520	Domain merging in LaBGeO5 single crystals. Ferroelectrics, 2021, 575, 151-157.	0.6	0
521	Magnetoelastic effect in CoNi particles caused by thermal resizing of a lithium niobate crystal substrate. Ferroelectrics, 2021, 574, 65-71.	0.6	O
522	Local polarization reversal in barium titanate single crystals and ceramics. Ferroelectrics, 2021, 574, 1-7.	0.6	0

#	Article	IF	CITATIONS
523	ĐĐ'Đ~ĐšĐ¡-Ñ,ĐμÑĐ½Đ¾Đ»Đ¾Đ³Đ,и– Đ°Đ¾Đ½Ñ†ĐμĐ¿Ñ†Đ,ѕрĐμÑ"Đ¾Ñ€Đ¼Đ°Ñ†Đ,иĐ,Đ,фу€	₯₽°₽₽	∕4 ð µÐ½Ñ, €
524	Domain Shape Appeared in Stoichiometric Lithium Niobate as a Result of Ion Beam Irradiation. KnE Engineering, $2018, 3, 1$.	0.1	0
525	10.1063/1.5046657.1., 2018, , .		O
526	10.1063/1.5094688.1., 2019,,.		0
527	10.1063/1.5114885.1., 2019,,.		O
528	Periodically-polled KTiOPO4 structures at optical parametric oscillator pumped by 1 mm DPSS nanosecond laser. , 2019, , .		0
529	10.1063/5.0008522.1., 2020, , .		0
530	10.1063/5.0014220.1., 2020,,.		0
531	Comparison optical parametric oscillators based on PPKTA and PPKTP for gas analyzes. , 2020, , .		0
532	Photoinduced conductivity during sub-bandgap illumination in periodically poled MgO:LiNbO3 with charged domain walls. Optical Materials, 2021, 122, 111813.	3.6	0
533	Thermostimulated Changes in the Switching Field of Planar CoNi Microparticles Formed on a Surface of Single-Crystal Lithium Niobate. Physics of the Solid State, 2021, 63, 1337-1342.	0.6	0
534	Evolution of Nanodomains and Formation of Self-Organized Structures during Local Switching in X-Cut LNOI. Crystals, 2022, 12, 659.	2.2	0
535	Microstructural features and complex electromechanical parameters of lead-free ferroelectric ceramics. Ferroelectrics, 2022, 591, 136-142.	0.6	0
536	Domain switching in KTP crystals induced by electron beam irradiation. Ferroelectrics, 2022, 592, 52-57.	0.6	0
537	Discrete switching in the ion sliced lithium niobate thin films with thick dielectric layer. Ferroelectrics, 2022, 592, 90-97.	0.6	0
538	Formation of broad domain boundary during dot ion beam irradiation in SBN:Ni single crystals. Ferroelectrics, 2022, 592, 72-82.	0.6	0
539	Domain structure evolution in calcium orthovanadate crystal induced by IR laser irradiation. Ferroelectrics, 2022, 592, 83-89.	0.6	0
540	Decay of domains created by local switching on non-polar cut of MgO doped LiNbO ₃ single crystals. Ferroelectrics, 2022, 592, 12-18.	0.6	0

#	Article	IF	CITATIONS
541	Reconstruction of the ferroelectric domain structure morphology in BaTiO ₃ single crystals using ÄŒerenkov-type second harmonic generation microscopy. Ferroelectrics, 2022, 592, 19-25.	0.6	0
542	Effect of electric field intensity on domain kinetics of Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal. Ceramics International, 2022, , .	4.8	0