Giovanni Blandino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5731538/publications.pdf

Version: 2024-02-01

212 papers

12,849 citations

23567 58 h-index 28297 105 g-index

215 all docs

215 docs citations

215 times ranked 16266 citing authors

#	Article	IF	Citations
1	CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Molecular Cancer, 2022, 21, 33.	19.2	23
2	Evidence of a SARS-CoV-2 double Spike mutation D614G/S939F potentially affecting immune response of infected subjects. Computational and Structural Biotechnology Journal, 2022, 20, 733-744.	4.1	6
3	Long Non-Coding RNAs in the Cell Fate Determination of Neoplastic Thymic Epithelial Cells. Frontiers in Immunology, 2022, 13, 867181.	4.8	1
4	Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nature Communications, 2022, 13, 2800.	12.8	21
5	MALAT1-dependent hsa_circ $_0076611$ regulates translation rate in triple-negative breast cancer. Communications Biology, 2022, 5, .	4.4	8
6	YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188756.	7.4	9
7	YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Letters, 2021, 500, 51-63.	7.2	54
8	Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death and Differentiation, 2021, 28, 1493-1511.	11.2	19
9	Two distinct TP53 mutations in HNSCC primary tumor: Only one circulates in the blood. Oral Oncology, 2021, 115, 105096.	1.5	1
10	MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Translational Cancer Research, 2021, 10, 3090-3110.	1.0	15
11	YAP and endothelin-1 signaling: an emerging alliance in cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 27.	8.6	23
12	CircRNAs: role in human diseases and potential use as biomarkers. Cell Death and Disease, 2021, 12, 468.	6.3	191
13	Drugging the Master Regulator TP53 in Cancer: Mission Possible?. Journal of Clinical Oncology, 2021, 39, 1595-1597.	1.6	5
14	H-Ras gene takes part to the host immune response to COVID-19. Cell Death Discovery, 2021, 7, 158.	4.7	11
15	METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clinical Epigenetics, 2021, 13, 173.	4.1	21
16	Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients. Cell Death and Disease, 2021, 12, 1019.	6.3	3
17	Arachidonic acid drives adaptive responses to chemotherapy-induced stress in malignant mesothelioma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 344.	8.6	9
18	Insights into Intra-Tumoral Heterogeneity: Transcriptional Profiling of Chemoresistant MPM Cell Subpopulations Reveals Involvement of NFkB and DNA Repair Pathways and Contributes a Prognostic Signature. International Journal of Molecular Sciences, 2021, 22, 12071.	4.1	7

#	Article	IF	CITATIONS
19	Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Seminars in Cell and Developmental Biology, 2020, 98, 105-117.	5.0	33
20	Oral mucositis: the hidden side of cancer therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 210.	8.6	146
21	Thymic Epithelial Tumors as a Model of Networking: Development of a Synergistic Strategy for Clinical and Translational Research Purposes. Frontiers in Oncology, 2020, 10, 922.	2.8	1
22	Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer. Communications Biology, 2020, 3, 677.	4.4	13
23	Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells, 2020, 9, 2439.	4.1	22
24	LINC00174 is a novel prognostic factor in thymic epithelial tumors involved in cell migration and lipid metabolism. Cell Death and Disease, 2020, 11 , 959.	6.3	27
25	A Division of Labor between YAP and TAZ in Non–Small Cell Lung Cancer. Cancer Research, 2020, 80, 4145-4157.	0.9	38
26	BRAF status modulates Interelukin-8 expression through a CHOP-dependent mechanism in colorectal cancer. Communications Biology, 2020, 3, 546.	4.4	8
27	Endothelin-1 axis fosters YAP-induced chemotherapy escape in ovarian cancer. Cancer Letters, 2020, 492, 84-95.	7.2	12
28	TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients. Journal of Experimental and Clinical Cancer Research, 2020, 39, 200.	8.6	25
29	Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Advances, 2020, 4, 5616-5630.	5.2	10
30	Circular RNAs in Embryogenesis and Cell Differentiation With a Focus on Cancer Development. Frontiers in Cell and Developmental Biology, 2020, 8, 389.	3.7	22
31	microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis, 2020, 9, 22.	4.9	30
32	Arenavirus as a potential etiological agent of odontogenic tumours in humans. Journal of Experimental and Clinical Cancer Research, 2020, 39, 34.	8.6	3
33	Paracrine Signaling from Breast Cancer Cells Causes Activation of ID4 Expression in Tumor-Associated Macrophages. Cells, 2020, 9, 418.	4.1	10
34	Cancer at the time of the COVID-19 hurricane. Journal of Experimental and Clinical Cancer Research, 2020, 39, 74.	8.6	8
35	Non-coding RNAs as Putative Biomarkers of Cancer-Associated Cachexia. Frontiers in Cell and Developmental Biology, 2020, 8, 257.	3.7	15
36	PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2020, 26, 2956-2971.	7.0	33

#	Article	IF	Citations
37	Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 349.	8.6	13
38	\hat{l}^2 -arrestin 1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nature Communications, 2019, 10, 3196.	12.8	40
39	The miR-205-5p/BRCA1/RAD17 Axis Promotes Genomic Instability in Head and Neck Squamous Cell Carcinomas. Cancers, 2019, 11, 1347.	3.7	31
40	<scp>cTAZ</scp> : a safeguard factor of antiviral response. EMBO Reports, 2019, 20, .	4.5	0
41	In vivo experimental models account for higher complexity than in vitro preclinical settings in cancer. Journal of Thoracic Disease, 2019, 11, S461-S464.	1.4	1
42	miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 141.	8.6	55
43	The circ <scp>RNA</scp> –micro <scp>RNA</scp> code: emerging implications for cancer diagnosis and treatment. Molecular Oncology, 2019, 13, 669-680.	4.6	300
44	Argonaute 2 drives miR-145-5p-dependent gene expression program in breast cancer cells. Cell Death and Disease, 2019, 10, 17.	6.3	28
45	Circular RNA YAP1: a new player in gastric cancer. Translational Cancer Research, 2019, 8, S195-S197.	1.0	0
46	hMENA is a key regulator in endothelin- $1/\hat{l}^2$ -arrestin1 \hat{a} ="induced invadopodial function and metastatic process. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3132-3137.	7.1	21
47	Association of Metformin with Breast Cancer Incidence and Mortality in Patients with Type II Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 627-635.	2.5	91
48	MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis, 2018, 39, 98-108.	2.8	29
49	Cheâ€1 is targeted by câ€Myc to sustain proliferation in preâ€Bâ€cell acute lymphoblastic leukemia. EMBO Reports, 2018, 19, .	4.5	23
50	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	16.8	270
51	MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis, 2018, 39, 293-304.	2.8	32
52	Zebrafish as experimental model to establish the contribution of mutant p53 and ID4 to breast cancer angiogenesis in vivo. Journal of Thoracic Disease, 2018, 10, E231-E233.	1.4	4
53	Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines. Cancer Letters, 2018, 433, 18-32.	7.2	20
54	Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Research, 2018, 20, 59.	5.0	38

#	Article	IF	CITATIONS
55	Long Non-coding MIR205HG Depletes Hsa-miR-590-3p Leading to Unrestrained Proliferation in Head and Neck Squamous Cell Carcinoma. Theranostics, 2018, 8, 1850-1868.	10.0	65
56	YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers, 2018, 10, 137.	3.7	89
57	New therapeutic strategies to treat human cancers expressing mutant p53 proteins. Journal of Experimental and Clinical Cancer Research, 2018, 37, 30.	8.6	160
58	Inhibitor of DNA Binding 4 (ID4). , 2018, , 2593-2600.		0
59	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	3.3	44
60	$\langle scp \rangle$ AMPK $\langle scp \rangle$ \hat{l}^21 reduces tumor progression and improves survival in p53 null mice. Molecular Oncology, 2017, 11, 1143-1155.	4.6	28
61	MicroRNAs as Key Effectors in the p53 Network. International Review of Cell and Molecular Biology, 2017, 333, 51-90.	3.2	34
62	Altered peritumoral microRNA expression predicts head and neck cancer patients with a high risk of recurrence. Modern Pathology, 2017, 30, 1387-1401.	5.5	44
63	The mutant p53â€lD4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Reports, 2017, 18, 1331-1351.	4.5	78
64	Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discovery, 2017, 3, 17022.	6.7	59
65	Thymic Epithelial Tumors phenotype relies on miR-145-5p epigenetic regulation. Molecular Cancer, 2017, 16, 88.	19.2	27
66	Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif- $1\hat{l}_{\pm}$ stabilization. Journal of Experimental and Clinical Cancer Research, 2017, 36, 32.	8.6	23
67	<i>MCM7</i> and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis, 2017, 38, 64-75.	2.8	52
68	Melatonin and Hippo Pathway: Is There Existing Cross-Talk?. International Journal of Molecular Sciences, 2017, 18, 1913.	4.1	34
69	Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. International Journal of Molecular Sciences, 2017, 18, 961.	4.1	41
70	The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biology, 2017, 18, 237.	8.8	179
71	MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer. Oncotarget, 2017, 8, 29540-29557.	1.8	26
72	Epigenetic silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells. Oncotarget, 2017, 8, 95674-95691.	1.8	33

#	Article	lF	CITATIONS
73	Genomic Instability: The Pivotal Role of Mutant P53 in Human Cancers. Chemotherapy, 2016, 05, .	0.0	O
74	Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Frontiers in Oncology, 2016, 6, 77.	2.8	59
75	Editorial: Human Tumor-Derived p53 Mutants: A Growing Family of Oncoproteins. Frontiers in Oncology, 2016, 6, 170.	2.8	3
76	Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Molecular Oncology, 2016, 10, 1008-1029.	4.6	115
77	Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology. Human Molecular Genetics, 2016, 25, ddw303.	2.9	38
78	<scp>YAP</scp> enhances the proâ€proliferative transcriptional activity of mutant p53 proteins. EMBO Reports, 2016, 17, 188-201.	4.5	154
79	MicroRNA expression as predictor of local recurrence risk in oral squamous cell carcinoma. Head and Neck, 2016, 38, E189-97.	2.0	45
80	Use of Buffy Coat miRNA Profiling for Breast Cancer Prediction in Healthy Women. Methods in Molecular Biology, 2016, 1379, 13-19.	0.9	4
81	microRNAs in Cancer Chemoprevention: Method to Isolate Them from Fresh Tissues. Methods in Molecular Biology, 2016, 1379, 21-29.	0.9	0
82	MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Seminars in Cell and Developmental Biology, 2016, 50, 133-142.	5.0	27
83	Circulating miR-21-5p and miR-148a-3p as emerging non-invasive biomarkers in thymic epithelial tumors. Cancer Biology and Therapy, 2016, 17, 79-82.	3.4	25
84	Mir 145/143: tumor suppressor, oncogenic microenvironmental factor orboth?. Aging, 2016, 8, 1153-1155.	3.1	10
85	miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget, 2016, 7, 4009-4023.	1.8	49
86	Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget, 2016, 7, 20532-20548.	1.8	49
87	Inhibitor of DNA Binding 4 (ID4). , 2016, , 1-7.		0
88	Gain-of-Function p53. , 2016, , 1828-1831.		0
89	Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas. PLoS ONE, 2015, 10, e0124894.	2.5	21
90	Oncogenic MicroRNAs: Key Players in Malignant Transformation. Cancers, 2015, 7, 2466-2485.	3.7	114

#	Article	IF	CITATIONS
91	Radioresistance in Head and Neck Squamous Cell Carcinoma — Possible Molecular Markers for Local Recurrence and New Putative Therapeutic Strategies. , 2015, , .		6
92	A STAT3-NFkB/DDIT3/CEBP \hat{I}^2 axis modulates ALDH1A3 expression in chemoresistant cell subpopulations. Oncotarget, 2015, 6, 12637-12653.	1.8	65
93	EGF induces microRNAs that target suppressors of cell migration: miR-15b targets <i>MTSS1</i> in breast cancer. Science Signaling, 2015, 8, ra29.	3.6	57
94	Cheâ€1â€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	7.8	66
95	Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells <i>ex vivo</i> through inhibition of <i>de novo</i> lipogenesis. Biochemical Journal, 2015, 469, 177-187.	3.7	79
96	Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition. RNA Biology, 2015, 12, 690-700.	3.1	16
97	Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 89-100.	4.1	107
98	What biomarkers (if any) for precise medicine?. Aging, 2015, 7, 533-534.	3.1	4
99	Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget, 2015, 6, 5547-5566.	1.8	41
100	miR-181c associates with tumor relapse of high grade osteosarcoma. Oncotarget, 2015, 6, 13946-13961.	1.8	20
101	<i>Cynara scolymus</i> affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget, 2015, 6, 18134-18150.	1.8	36
102	Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget, 2015, 6, 35183-35201.	1.8	75
103	Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 2014, 5, 4129-4143.	1.8	40
104	Transcriptional Regulation by Mutant p53 and Oncogenesis. Sub-Cellular Biochemistry, 2014, 85, 91-103.	2.4	24
105	MicroRNA Signature in Metastatic Colorectal Cancer Patients Treated With Anti-EGFR Monoclonal Antibodies. Clinical Colorectal Cancer, 2014, 13, 37-45.e4.	2.3	46
106	Tumor suppressor microRNAs: A novel nonâ€coding alliance against cancer. FEBS Letters, 2014, 588, 2639-2652.	2.8	58
107	Interaction of mutant p53 with p73: A Surface Plasmon Resonance and Atomic Force Spectroscopy study. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1958-1964.	2.4	15
108	Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers. Nature Medicine, 2014, 20, 599-606.	30.7	250

#	Article	IF	Citations
109	Downregulation of microRNAs 145-3p and 145-5p Is a Long-term Predictor of Postmenopausal Breast Cancer Risk: The ORDET Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2471-2481.	2.5	24
110	MicroRNAs: short non-coding players in cancer chemoresistance. Molecular and Cellular Therapies, 2014, 2, 16.	0.2	31
111	miR-155 Drives Telomere Fragility in Human Breast Cancer by Targeting TRF1. Cancer Research, 2014, 74, 4145-4156.	0.9	108
112	VDR primary targets by genome-wide transcriptional profiling. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 348-356.	2.5	36
113	MicroRNA expression profiling of thymic epithelial tumors. Lung Cancer, 2014, 85, 197-204.	2.0	43
114	Tumor suppression. FEBS Letters, 2014, 588, 2557-2557.	2.8	0
115	microRNAs: short non-coding bullets of gain of function mutant p53 proteins. Oncoscience, 2014, 1, 427-433.	2.2	17
116	microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Annals of Translational Medicine, 2014, 2, 58.	1.7	28
117	Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort. Breast Cancer Research, 2013, 15, R46.	5.0	31
118	ChIP-on-chip to Identify Mutant p53 Targets. Methods in Molecular Biology, 2013, 962, 211-226.	0.9	4
119	YAP and p73: A Matter of Mutual Specificity in Tumor Suppression. , 2013, , 147-172.		3
120	MicroRNA-181a/b: Novel biomarkers to stratify breast cancer patients for PARPi treatment. Cell Cycle, 2013, 12, 1823-1823.	2.6	5
121	Gender, mutant p53 and PML: A growing "affaire―in tumor suppression and oncogenesis. Cell Cycle, 2013, 12, 1824-1825.	2.6	7
122	Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis, 2013, 34, 1051-1061.	2.8	52
123	PML Surfs into HIPPO Tumor Suppressor Pathway. Frontiers in Oncology, 2013, 3, 36.	2.8	14
124	The locus of microRNA-10b. Cell Cycle, 2013, 12, 2371-2375.	2.6	37
125	Editorial: (Thematic Issue: MicroRNAs: Non Coding Pleiotropic Factors in Development, Cancer) Tj ETQq1 1 0.78	4314 rgBT 1.2	/Overlock 10
126	Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites, 2013, 3, 1051-1075.	2.9	26

#	Article	IF	Citations
127	MYC Is Activated by USP2a-Mediated Modulation of MicroRNAs in Prostate Cancer. Cancer Discovery, 2012, 2, 236-247.	9.4	82
128	Butein impairs the protumorigenic activity of malignant pleural mesothelioma cells. Cell Cycle, 2012, 11, 132-140.	2.6	27
129	miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death and Disease, 2012, 3, e423-e423.	6.3	160
130	Hippo and <i>rassf1a </i> Pathways: A Growing Affair. Molecular Biology International, 2012, 2012, 1-12.	1.7	26
131	miRâ€10b*, a master inhibitor of the cell cycle, is downâ€regulated in human breast tumours. EMBO Molecular Medicine, 2012, 4, 1214-1229.	6.9	85
132	Molecular Genetics and Biology of Head and Neck Squamous Cell Carcinoma: Implications for Diagnosis, Prognosis and Treatment. , 2012, , .		5
133	SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. Journal of Experimental and Clinical Cancer Research, 2012, 31, 7.	8.6	17
134	MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death and Differentiation, 2012, 19, 1038-1048.	11.2	136
135	Direct and delayed Xâ€rayâ€induced DNA damage in male mouse germ cells. Environmental and Molecular Mutagenesis, 2012, 53, 429-439.	2.2	27
136	Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nature Communications, 2012, 3, 865.	12.8	198
137	The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. Journal of Molecular Medicine, 2012, 90, 667-679.	3.9	54
138	Prospective study on the role of glucose metabolism in breast cancer occurrence. International Journal of Cancer, 2012, 130, 921-929.	5.1	78
139	ChIP-on-Chip Analysis of <i>In Vivo</i> Mutant p53 Binding To Selected Gene Promoters. OMICS A Journal of Integrative Biology, 2011, 15, 305-312.	2.0	36
140	Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13710-13715.	7.1	141
141	PGC1α Confers Specificity—Metabolic Stress and p53-Dependent Transcription. Molecular Cell, 2011, 44, 515-516.	9.7	7
142	Dose and polymorphic genes xrcc1, xrcc3, gst play a role in the risk of developing erythema in breast cancer patients following single shot partial breast irradiation after conservative surgery. BMC Cancer, 2011, 11, 291.	2.6	14
143	Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle, 2011, 10, 4330-4340.	2.6	74
144	Chromatin Dynamics of Gene Activation and Repression in Response to Interferon $\hat{l}\pm$ (IFN $\hat{l}\pm$) Reveal New Roles for Phosphorylated and Unphosphorylated Forms of the Transcription Factor STAT2. Journal of Biological Chemistry, 2011, 286, 20217-20227.	3.4	51

#	Article	IF	Citations
145	Omics Underpins Novel Clues on VDR Chemoprevention Target in Breast Cancer. OMICS A Journal of Integrative Biology, 2011, 15, 337-346.	2.0	6
146	Allelic Expression Imbalance of TP53 Mutated and Polymorphic Alleles in Head and Neck Tumors. OMICS A Journal of Integrative Biology, 2011, 15, 375-381.	2.0	10
147	The Cancer-associated K351N Mutation Affects the Ubiquitination and the Translocation to Mitochondria of p53 Protein. Journal of Biological Chemistry, 2011, 286, 39693-39702.	3.4	21
148	Gain of Function p53., 2011, , 1486-1489.		0
149	Modulation of the Vitamin D3 Response by Cancer-Associated Mutant p53. Cancer Cell, 2010, 17, 273-285.	16.8	228
150	Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation. Cancer Cell, 2010, 18, 122-134.	16.8	45
151	p53: The pivot between cell cycle arrest and senescence. Cell Cycle, 2010, 9, 4266-4265.	2.6	14
152	<i>Id2</i> gene is a transcriptional target of the protein complex mutant p53/E2F1. Cell Cycle, 2010, 9, 2464-2466.	2.6	12
153	Novel insights into the cytoplasmic functions of p53. Cell Cycle, 2010, 9, 2491-2501.	2.6	1
154	Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like-and early progenitor-targeting drugs. Cell Cycle, 2010, 9, 2950-2959.	2.6	86
155	Stability strengths oncogenic activity. Cell Cycle, 2010, 9, 1456-1465.	2.6	0
156	Phosphorylation of Ser312 contributes to tumor suppression by p53 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19479-19484.	7.1	23
157	EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors. Science Signaling, 2010, 3, ra43.	3.6	100
158	ID4: a new player in the cancer arena. Oncotarget, 2010, 1, 48-58.	1.8	36
159	ID4: a new player in the cancer arena. Oncotarget, 2010, 1, 48-58.	1.8	25
160	Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like-and early progenitor-targeting drugs. Cell Cycle, 2010, 9, 2878-87.	2.6	51
161	Negative Regulation of \hat{l}^24 Integrin Transcription by Homeodomain-Interacting Protein Kinase 2 and p53 Impairs Tumor Progression. Cancer Research, 2009, 69, 5978-5986.	0.9	48
162	Metformin, diet and breast cancer: An avenue for chemoprevention. Cell Cycle, 2009, 8, 2661-2661.	2.6	33

#	Article	IF	CITATIONS
163	Promyelocytic Leukemia Protein is Required for Gain of Function by Mutant p53. Cancer Research, 2009, 69, 4818-4826.	0.9	76
164	p63 regulation by microRNAs. Cell Cycle, 2009, 8, 1466-1470.	2.6	6
165	Tetraploidy triggers mithocondria. Cell Cycle, 2009, 8, 1305-1307.	2.6	O
166	Characterization of a new cancer-associated mutant of p53 with a missense mutation (K351N) in the tetramerization domain. Cell Cycle, 2009, 8, 3396-3405.	2.6	16
167	YAP: At the crossroad between transformation and tumor suppression. Cell Cycle, 2009, 8, 49-57.	2.6	99
168	The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nature Structural and Molecular Biology, 2009, 16, 1086-1093.	8.2	182
169	Urinary estrogen metabolites and prostate cancer: a case-control study and meta-analysis. Journal of Experimental and Clinical Cancer Research, 2009, 28, 135.	8.6	16
170	The Hippo Tumor Suppressor Pathway: A Brainstorming WorkshopA report on the research meeting "The Hippo Tumor Suppressor Pathway: A Brainstorming Workshop―sponsored mainly by the Regina Elena Cancer Center and the Nicola Foundation and held in Rome, Italy, on 22 and 23 April 2009 Science Signaling, 2009, 2, mr6.	3.6	13
171	PML, YAP, and p73 Are Components of a Proapoptotic Autoregulatory Feedback Loop. Molecular Cell, 2008, 32, 803-814.	9.7	224
	2000, 32, 003-014.		
172	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291.	2.6	O
		2.6	0 83
172	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells		
172 173	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447. Reversible Dysfunction of Wild-Type p53 following Homeodomain-Interacting Protein Kinase-2	2.6	83
172 173 174	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447. Reversible Dysfunction of Wild-Type p53 following Homeodomain-Interacting Protein Kinase-2 Knockdown. Cancer Research, 2008, 68, 3707-3714. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Current Genomics, 2008, 9,	2.6	78
172 173 174	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447. Reversible Dysfunction of Wild-Type p53 following Homeodomain-Interacting Protein Kinase-2 Knockdown. Cancer Research, 2008, 68, 3707-3714. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Current Genomics, 2008, 9, 200-207. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor	2.6 0.9 1.6	83 78 20
172 173 174 175	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447. Reversible Dysfunction of Wild-Type p53 following Homeodomain-Interacting Protein Kinase-2 Knockdown. Cancer Research, 2008, 68, 3707-3714. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Current Genomics, 2008, 9, 200-207. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 2008, 7, 1870-1879. Mutant p53 Enhances Nuclear Factor ήB Activation by Tumor Necrosis Factor α in Cancer Cells. Cancer	2.6 0.9 1.6 2.6	83 78 20 81
172 173 174 175 176	Mitosis poisons p53. Cell Cycle, 2008, 7, 3287-3291. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447. Reversible Dysfunction of Wild-Type p53 following Homeodomain-Interacting Protein Kinase-2 Knockdown. Cancer Research, 2008, 68, 3707-3714. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Current Genomics, 2008, 9, 200-207. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 2008, 7, 1870-1879. Mutant p53 Enhances Nuclear Factor î°B Activation by Tumor Necrosis Factor î± in Cancer Cells. Cancer Research, 2007, 67, 2396-2401.	2.6 0.9 1.6 2.6	83 78 20 81 178

#	Article	IF	CITATIONS
181	Mutant p53: an oncogenic transcription factor. Oncogene, 2007, 26, 2212-2219.	5.9	241
182	p73, p63 and Mutant p53: Members of Protein Complexes Floating in Cancer Cells., 2007, , 223-232.		0
183	Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell, 2006, 10, 191-202.	16.8	386
184	Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. Journal of Cell Biology, 2006, 172, 589-604.	5. 2	84
185	ÎEF1 repressor controls selectively p53 family members during differentiation. Oncogene, 2005, 24, 7273-7280.	5.9	42
186	A Role of p73 in Mitotic Exit. Journal of Biological Chemistry, 2005, 280, 30354-30360.	3.4	35
187	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 18, 447-459.	9.7	318
188	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 19, 429.	9.7	3
189	p73-induced apoptosis: A question of compartments and cooperation. Biochemical and Biophysical Research Communications, 2005, 331, 688-693.	2.1	37
190	p73 and p63: Why Do We Still Need Them?. Cell Cycle, 2004, 3, 884-892.	2.6	52
191	HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene, 2004, 23, 5185-5192.	5.9	60
192	Pin1 Links the Activities of c-Abl and p300 in Regulating p73 Function. Molecular Cell, 2004, 14, 625-636.	9.7	165
193	Change of Conformation of the DNA-binding Domain of p53 Is the Only Key Element for Binding of and Interference with p73. Journal of Biological Chemistry, 2003, 278, 10546-10555.	3.4	36
194	p73 Is Regulated by Phosphorylation at the G2/M Transition. Journal of Biological Chemistry, 2003, 278, 49196-49202.	3.4	37
195	p73-Mediated Chemosensitivity: A Preferential Target of Oncogenic Mutant p53. Cell Cycle, 2003, 2, 345-346.	2.6	34
196	p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle, 2003, 2, 348-9.	2.6	20
197	Physical Interaction with Human Tumor-derived p53 Mutants Inhibits p63 Activities. Journal of Biological Chemistry, 2002, 277, 18817-18826.	3.4	203
198	Identification of Direct p73 Target Genes Combining DNA Microarray and Chromatin Immunoprecipitation Analyses. Journal of Biological Chemistry, 2002, 277, 43359-43368.	3.4	125

#	Article	IF	CITATIONS
199	Expression of the \hat{l}^24 integrin subunit induces monocytic differentiation of 32D/v-Abl cells. Blood, 2002, 100, 96-106.	1.4	45
200	DNA Damage-Dependent Acetylation of p73 Dictates the Selective Activation of Apoptotic Target Genes. Molecular Cell, 2002, 9, 175-186.	9.7	298
201	Monoclonal antibodies raised against Xenopus p53 interact with human p73. Oncogene, 2002, 21, 1304-1308.	5.9	4
202	The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature, 2002, 419, 853-857.	27.8	390
203	From p63 to p53 across p73. FEBS Letters, 2001, 490, 163-170.	2.8	79
204	Physical Interaction with Yes-associated Protein Enhances p73 Transcriptional Activity. Journal of Biological Chemistry, 2001, 276, 15164-15173.	3.4	368
205	The Transcriptional Repressor ZEB Regulates p73 Expression at the Crossroad between Proliferation and Differentiation. Molecular and Cellular Biology, 2001, 21, 8461-8470.	2.3	117
206	Physical and Functional Interaction between p53 Mutants and Different Isoforms of p73. Journal of Biological Chemistry, 2000, 275, 29503-29512.	3.4	217
207	Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature, 1999, 399, 809-813.	27.8	529
208	Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 1999, 18, 477-485.	5.9	411
209	Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene, 1999, 18, 2643-2649.	5.9	126
210	Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene, 1998, 17, 1923-1930.	5.9	98
211	Oncogenes belonging to the CSF-1 transduction pathway direct p53 tumor suppressor effects to monocytic differentiation in 32D cells. Oncogene, 1997, 15, 607-611.	5.9	5
212	Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene, 1997, 15, 2717-2725.	5.9	102