Jonathan Bird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5729959/publications.pdf

Version: 2024-02-01

307	5,204	35	57
papers	citations	h-index	g-index
310	310	310	3798
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Probing the Dynamics of Electric Double Layer Formation over Wide Time Scales (10–9–10+5 s) in the Ionic Liquid DEME-TFSI. Journal of Physical Chemistry C, 2022, 126, 1958-1965.	3.1	3
2	Graphene on Chromia: A System for Beyondâ€Roomâ€Temperature Spintronics. Advanced Materials, 2022, 34, e2105023.	21.0	5
3	High-electric-field behavior of the metal-insulator transition in TiS ₃ nanowire transistors. Applied Physics Letters, 2022, 120, 073102.	3.3	9
4	Asymmetrically Engineered Nanoscale Transistors for On-Demand Sourcing of Terahertz Plasmons. Nano Letters, 2022, 22, 2674-2681.	9.1	4
5	Graphene on Chromia: A System for Beyondâ€Roomâ€Temperature Spintronics (Adv. Mater. 12/2022). Advanced Materials, 2022, 34, .	21.0	1
6	Covalent 2D Cr ₂ Te ₃ ferromagnet. Materials Research Letters, 2021, 9, 205-212.	8.7	25
7	Remote Mesoscopic Signatures of Induced Magnetic Texture in Graphene. Physical Review Letters, 2021, 126, 086802.	7.8	0
8	Evidence for a thermally driven charge-density-wave transition in 1T-TaS2 thin-film devices: Prospects for GHz switching speed. Applied Physics Letters, 2021, 118, .	3.3	16
9	Collective states and charge density waves in the group IV transition metal trichalcogenides. Applied Physics Letters, 2021, 118, .	3.3	22
10	Valley polarized conductance quantization in bilayer graphene narrow quantum point contact. Applied Physics Letters, 2021, 118, .	3.3	6
11	Signature of Spin-Resolved Quantum Point Contact in p-Type Trilayer WSe ₂ van der Waals Heterostructure. Nano Letters, 2021, 21, 7534-7541.	9.1	3
12	Evolving magneto-electric device technologies. Semiconductor Science and Technology, 2020, 35, 073001.	2.0	17
13	Universal scaling of weak localization in graphene due to bias-induced dispersion decoherence. Scientific Reports, 2020, 10, 5611.	3.3	1
14	Investigation of laser-induced-metal phase of MoTe ₂ and its contact property via scanning gate microscopy. Nanotechnology, 2020, 31, 205205.	2.6	11
15	Transient hot-carrier dynamics and intrinsic velocity saturation in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi>mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review Materials, 2020, 4.	i 2.4	15
16	Pulsed studies of intervalley transfer in Al0.35In0.65As : A paradigm for valley photovoltaics. Physical Review Materials, 2020, 4, .	2.4	3
17	Giant Zero Bias Anomaly due to Coherent Scattering from Frozen Phonon Disorder in Quantum Point Contacts. Physical Review Letters, 2019, 123, 056802.	7.8	О
18	Nonvolatile Memory Action Due to Hot-Carrier Charge Injection in Graphene-on-Parylene Transistors. ACS Applied Electronic Materials, 2019, 1, 2260-2267.	4.3	7

#	Article	IF	CITATIONS
19	Building the Quasi One Dimensional Transistor from 2D Materials. , 2019, , .		3
20	Reply to "Comment on â€~Gate-Controlled Metal–Insulator Transition in TiS ₃ Nanowire Field-Effect Transistors'― ACS Nano, 2019, 13, 8498-8500.	14.6	3
21	Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Advances, $2019, 9, .$	1.3	40
22	Transient Response of h-BN-Encapsulated Graphene Transistors: Signatures of Self-Heating and Hot-Carrier Trapping. ACS Omega, 2019, 4, 4082-4090.	3.5	12
23	Realizing Asymmetric Boundary Conditions for Plasmonic THz Wave Generation in HEMTs. , 2019, , .		1
24	Gate-Controlled Metal–Insulator Transition in TiS ₃ Nanowire Field-Effect Transistors. ACS Nano, 2019, 13, 803-811.	14.6	54
25	Towards a Strong Spin–Orbit Coupling Magnetoelectric Transistor. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2018, 4, 1-9.	1.5	40
26	Ordered three-fold symmetric graphene oxide/buckled graphene/graphene heterostructures on MgO(111) by carbon molecular beam epitaxy. Journal of Materials Chemistry C, 2018, 6, 4225-4233.	5.5	1
27	Compact Modeling and Design of Magneto-Electric Transistor Devices and Circuits. , 2018, , .		9
28	Dielectric properties of thin Cr2O3 films grown on elemental and oxide metallic substrates. Physical Review Materials, $2018, 2, .$	2.4	15
29	Probing charge trapping and joule heating in graphene field-effect transistors by transient pulsing. Semiconductor Science and Technology, 2017, 32, 084005.	2.0	12
30	Negative Differential Conductance & Differential	3.3	18
31	Evaluating the Sources of Graphene's Resistivity Using Differential Conductance. Scientific Reports, 2017, 7, 10317.	3.3	8
32	Epitaxial growth of cobalt oxide phases on Ru(0001) for spintronic device applications. Semiconductor Science and Technology, 2017, 32, 095011.	2.0	16
33	Moving towards the magnetoelectric graphene transistor. Applied Physics Letters, 2017, 111, 182402.	3.3	19
34	Verilog-A based compact modeling of the magneto-electric FET device., 2017,,.		4
35	Magneto-electric magnetic tunnel junction based analog circuit options. , 2017, , .		1
36	Prospects for the application of two-dimensional materials to terahertz-band communications. , 2017, , .		0

#	Article	IF	CITATIONS
37	Compact-device model development for the energy-delay analysis of magneto-electric magnetic tunnel junction structures. Semiconductor Science and Technology, 2016, 31, 065022.	2.0	17
38	Memory circuits using NanoFerroic devices. , 2016, , .		0
39	Multi-bit adder design using ME-MTJ technology. , 2016, , .		4
40	VerilogA based compact model of a three-terminal ME-MTJ device. , 2016, , .		9
41	Conductance fluctuations in graphene in the presence of long-range disorder. Journal of Physics Condensed Matter, 2016, 28, 135302.	1.8	6
42	Thermally Assisted Nonvolatile Memory in Monolayer MoS ₂ Transistors. Nano Letters, 2016, 16, 6445-6451.	9.1	47
43	Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS ₂ Transistors. ACS Nano, 2016, 10, 9730-9737.	14.6	26
44	Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance. Physical Review B, $2016, 93, .$	3.2	5
45	Imaging local transport property within MoS <inf>2</inf> transistors by scanning gate microscopy., 2016,,.		0
46	"Freeing―Graphene from Its Substrate: Observing Intrinsic Velocity Saturation with Rapid Electrical Pulsing. Nano Letters, 2016, 16, 399-403.	9.1	40
47	Energy relaxation of hot carriers in graphene via plasmon interactions. Journal of Computational Electronics, 2016, 15, 144-153.	2.5	0
48	Plasmon-mediated energy relaxation in graphene. Applied Physics Letters, 2015, 107, 262103.	3.3	3
49	A review of progress in the physics of open quantum systems: theory and experiment. Reports on Progress in Physics, 2015, 78, 114001.	20.1	185
50	Magneto-electric magnetic tunnel junction logic devices. , 2015, , .		15
51	Magneto-electric magnetic tunnel junction as process adder for non-volatile memory applications. , 2015, , .		13
52	Electroluminescence from GaAs/AlGaAs Heterostructures in Strong in-Plane Electric Fields: Evidence fork- and Real-Space Charge Transfer. ACS Photonics, 2015, 2, 1155-1159.	6.6	4
53	Conduction Mechanisms in CVD-Grown Monolayer MoS ₂ Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Letters, 2015, 15, 5052-5058.	9.1	92
54	High-Voltage Breakdown and the Gunn Effect in GaAs/AlGaAs Nanoconstrictions. IEEE Nanotechnology Magazine, 2015, 14, 524-530.	2.0	2

#	Article	IF	Citations
55	Metal–insulator transition in the quasi-one-dimensional transport of fractional quantum hall states. Journal of Physics Condensed Matter, 2015, 27, 202201.	1.8	O
56	Electric-field dependent conduction mechanisms in crystalline chromia. Applied Physics Letters, 2015, 106, .	3.3	15
57	Reversing hot-carrier energy-relaxation in graphene with a magnetic field. Applied Physics Letters, 2014, 104, 193115.	3.3	5
58	Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing. Nature Nanotechnology, 2014, 9, 101-105.	31.5	6
59	On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off. Journal of Physics Condensed Matter, 2014, 26, 125304.	1.8	5
60	Tuning the Fano Resonance with an Intruder Continuum. Nano Letters, 2014, 14, 788-793.	9.1	15
61	Electroluminescence from a GaAs/AlGaAs Heterostructure at High Electric Fields: Evidence for Real- & k-Space Transfer. , 2014, , .		0
62	Open quantum dots: Physics of the nonâ∈Hermitian Hamiltonian. Fortschritte Der Physik, 2013, 61, 291-304.	4.4	8
63	Talking through the continuum: New manifestations of Fanoâ€resonance phenomenology realized with mesoscopic nanostructures. Fortschritte Der Physik, 2013, 61, 348-359.	4.4	3
64	Fast Energy Relaxation of Hot Carriers Near the Dirac Point of Graphene. Nano Letters, 2013, 13, 4305-4310.	9.1	29
65	Tunable insulator-quantum Hall transition in a weakly interacting two-dimensional electron system. Nanoscale Research Letters, 2013, 8, 307.	5.7	4
66	Experimental evidence for direct insulator-quantum Hall transition in multi-layer graphene. Nanoscale Research Letters, 2013, 8, 214.	5.7	9
67	GR-FET application for high-frequency detection device. Nanoscale Research Letters, 2013, 8, 22.	5.7	3
68	Terahertz Detection With Nanoscale Semiconductor Rectifiers. IEEE Sensors Journal, 2013, 13, 24-30.	4.7	1
69	Large Magnetoresistance of Nickel-Silicide Nanowires: Non-Equilibrium Heating of Magnetically-Coupled Dangling Bonds. Nano Letters, 2013, 13, 1106-1110.	9.1	9
70	Difference of operation mechanisms in SWNTs network FETs studied via scanning gate microscopy. , 2013, , .		0
71	Room conditions THz detector using graphene FET. , 2013, , .		0
72	Analysis of Operation Mechanism of Field Effect Transistor Composed of Network of High-Quality Single Wall Carbon Nanotubes by Scanning Gate Microscopy. Japanese Journal of Applied Physics, 2012, 51, 04DN05.	1.5	1

#	Article	IF	CITATIONS
73	Insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields. Journal of Physics Condensed Matter, 2012, 24, 405601.	1.8	5
74	Coupling Quantum States through a Continuum: A Mesoscopic Multistate Fano Resonance. Physical Review $X,2012,2,.$	8.9	21
75	Nonergodicity and microscopic symmetry breaking of the conductance fluctuations in disordered mesoscopic graphene. Physical Review B, 2012, 86, .	3.2	27
76	Multi-continuum Fano resonance in coupled quantum point contacts: A manifestation of the $\hat{a}\in \hat{c}$ integral $\hat{a}\in F$ and formula. Journal of Applied Physics, 2012, 112, 103704.	2.5	0
77	Open quantum dots: II. Probing the classical to quantum transition. Journal of Physics Condensed Matter, 2012, 24, 343202.	1.8	11
78	Robust mesoscopic fluctuations in disordered graphene. Applied Physics Letters, 2012, 101, 093110.	3.3	18
79	The magnetic Y-branch nanojunction: Domain-wall structure and magneto-resistance. Applied Physics Letters, 2012, 101, 102403.	3.3	5
80	Analysis of Operation Mechanism of Field Effect Transistor Composed of Network of High-Quality Single Wall Carbon Nanotubes by Scanning Gate Microscopy. Japanese Journal of Applied Physics, 2012, 51, 04DN05.	1.5	4
81	Towards Graphene GHz/THz Nanosensor. Japanese Journal of Applied Physics, 2011, 50, 070119.	1.5	4
82	High frequency transport in bi-layer graphene FET devices. , 2011, , .		0
82	High frequency transport in bi-layer graphene FET devices., 2011,,. Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84,.	3.2	0
	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011,	3.2	
83	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84, . Charge carrier behavior in UV irradiated fullerene nano whiskers based on studies of electrical		2
83	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84, . Charge carrier behavior in UV irradiated fullerene nano whiskers based on studies of electrical conduction and ESR. AIP Conference Proceedings, 2011, , . Localized State in Quantum Point Contacts: Possible Qubit Implementation?. Journal of Computational	0.4	4
83 84 85	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84, . Charge carrier behavior in UV irradiated fullerene nano whiskers based on studies of electrical conduction and ESR. AIP Conference Proceedings, 2011, , . Localized State in Quantum Point Contacts: Possible Qubit Implementation?. Journal of Computational and Theoretical Nanoscience, 2011, 8, 391-400. Open quantum dotsâ€"probing the quantum to classical transition. Semiconductor Science and	0.4	2 4 0
83 84 85	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84, . Charge carrier behavior in UV irradiated fullerene nano whiskers based on studies of electrical conduction and ESR. AIP Conference Proceedings, 2011, , . Localized State in Quantum Point Contacts: Possible Qubit Implementation?. Journal of Computational and Theoretical Nanoscience, 2011, 8, 391-400. Open quantum dotsâ€"probing the quantum to classical transition. Semiconductor Science and Technology, 2011, 26, 043001.	0.4	2 4 0
83 84 85 86	Many-body enhanced nonlinear conductance resonance in quantum channels. Physical Review B, 2011, 84, . Charge carrier behavior in UV irradiated fullerene nano whiskers based on studies of electrical conduction and ESR. AIP Conference Proceedings, 2011, , . Localized State in Quantum Point Contacts: Possible Qubit Implementation?. Journal of Computational and Theoretical Nanoscience, 2011, 8, 391-400. Open quantum dotsâ€"probing the quantum to classical transition. Semiconductor Science and Technology, 2011, 26, 043001. Towards Graphene GHz/THz Nanosensor. Japanese Journal of Applied Physics, 2011, 50, 070119.	0.4 0.4 2.0	2 4 0 44 3

#	Article	IF	Citations
91	Crossover from Fermi Liquid to Multichannel Luttinger Liquid in High-Mobility Quantum Wires. Physical Review Letters, 2010, 104, 046805.	7.8	3
92	Bolometric terahertz detection in pinched-off quantum point contacts. Applied Physics Letters, 2010, 97, .	3.3	19
93	Nonspin related giant magnetoresistance â‰ € 00% in hybrid field-effect transistors with ferromagnetic gates. Applied Physics Letters, 2010, 97, 063108.	3.3	2
94	Electron Transport Properties in Photo and Supersonic Wave Irradiated C60Fullerene Nano-Whisker Field-Effect Transistors. Japanese Journal of Applied Physics, 2010, 49, 04DN12.	1.5	10
95	Evaluating the performance of quantum point contacts as nanoscale terahertz sensors. Optics Express, 2010, 18, 4609.	3.4	10
96	Magnetoresistance and Phase Breaking Behavior of a Nitrogen Doped Multi-Walled Carbon Nanotube. Japanese Journal of Applied Physics, 2010, 49, 02BD01.	1.5	1
97	Detector backaction on the self-consistent bound state in quantum point contacts. Physical Review B, 2009, 79, .	3.2	19
98	Current-voltage spectroscopy of the subband structure of strongly pinched-off quantum point contacts. Applied Physics Letters, 2009, 95, .	3.3	6
99	Influence of quantum-interference on the fringing-field magnetoresistance of hybrid ferromagnetic/semiconductor devices. Applied Physics Letters, 2009, 95, 143113.	3.3	2
100	Nonlocal bias spectroscopy of the self-consistent bound state in quantum point contacts near pinch off. Applied Physics Letters, 2009, 94, 213103.	3.3	13
101	Field-effect-transistor characteristics of solvate C ₆₀ fullerene nanowhiskers. Journal of Physics: Conference Series, 2009, 159, 012004.	0.4	7
102	Regular conductance fluctuations indicative of quasi-ballistic transport in bilayer graphene. Journal of Physics Condensed Matter, 2009, 21, 382202.	1.8	22
103	Dynamical characteristics of the giant magneto-resistance of epitaxial silicide nanowires. Nanotechnology, 2009, 20, 135401.	2.6	4
104	Transport in open quantum systems: comparing classical and quantum phase space dynamics. Journal of Computational Electronics, 2008, 7, 259-262.	2.5	3
105	Classical and quantum dynamics in an array of electron billiards. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1315-1318.	2.7	4
106	Manipulation of an unusual anomalous Hall effect in Ga1â^'xMnxSb random alloys. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2104-2106.	2.7	9
107	Characterization of Nanomagnet Fringing Fields in Hybrid Semiconductor/Ferromagnetic Devices. IEEE Transactions on Magnetics, 2008, 44, 4706-4710.	2.1	3
108	The 0.7 feature and interactions in one-dimensional systems. Journal of Physics Condensed Matter, 2008, 20, 160301.	1.8	26

#	Article	IF	Citations
109	Large tunneling magnetoresistance in a field-effect transistor with a nanoscale ferromagnetic gate. Applied Physics Letters, 2008, 92, 253101.	3.3	16
110	Terahertz response of quantum point contacts. Applied Physics Letters, 2008, 92, 223115.	3.3	27
111	C ₆₀ Nanowhisker Field-Effect-Transistor Application for Nano-Electronics. Japanese Journal of Applied Physics, 2008, 47, 501.	1.5	14
112	Phenomenological investigation of many-body induced modifications to the one-dimensional density of states of long quantum wires. Journal of Physics Condensed Matter, 2008, 20, 164209.	1.8	1
113	Nonlinear characteristics of the hysteretic magnetoresistance of a hybrid nanomagnetic field-effect transistor. Applied Physics Letters, 2008, 93, .	3.3	7
114	Detecting bound spins using coupled quantum point contacts. Journal of Physics Condensed Matter, 2008, 20, 164216.	1.8	3
115	Tunneling spectroscopy of a ballistic quantum wire. Physical Review B, 2008, 78, .	3.2	2
116	Linear and nonlinear conductance of ballistic quantum wires with hybrid confinement. Journal of Applied Physics, 2008, 103, 013701.	2.5	10
117	Aharonov-Bohm effect in the magnetoresistance of a multiwalled carbon nanotube with tunneling contacts. Physical Review B, 2008, 77, .	3.2	3
118	Magneto-resistance peaks and phase breaking behaviour in a thin multi-walled carbon nanotube. Journal of Physics: Conference Series, 2008, 109, 012018.	0.4	0
119	MAGNETO-TRANSPORT IN OPEN QUANTUM DOT ARRAYS AT THE TRANSITION FROM LOW TO HIGH MAGNETIC FIELDS: REGULARITY AND CHAOS. International Journal of Modern Physics B, 2007, 21, 1288-1296.	2.0	4
120	C60 nanowhiskers for electronics: Field-effect-transistor characteristics of pure and solvate C60 nanowhiskers., 2007,,.		0
121	EDGE STATES AND TRAJECTORIES IN QUANTUM DOTS: PROBING THE QUANTUM-CLASSICAL TRANSITION. International Journal of Modern Physics B, 2007, 21, 1278-1287.	2.0	0
122	Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme. Journal of Physics Condensed Matter, 2007, 19, 276205.	1.8	10
123	Scanning gate microscopy of copper phthalocyanine field effect transistors. Applied Physics Letters, 2007, 91, .	3.3	9
124	Large hysteretic magnetoresistance in high-mobility semiconductor quantum wires bridged by single-domain nanomagnets. Applied Physics Letters, 2007, 91, 022105.	3.3	14
125	Probing the Microscopic Structure of Bound States in Quantum Point Contacts. Physical Review Letters, 2007, 99, 136805.	7.8	53
126	Draining of the Sea of Chaos: Role of Resonant Transmission and Reflection in an Array of Billiards. Physical Review Letters, 2007, 98, 204101.	7.8	38

#	Article	IF	CITATIONS
127	Large hysteretic magnetoresistance of silicide nanostructures. Physical Review B, 2007, 76, .	3.2	9
128	Chaotic Behavior in the Magneto-Resistance of Quantum Dot and Quantum Point Contact. Progress of Theoretical Physics Supplement, 2007, 166, 127-135.	0.1	0
129	Pulsed measurements of the nonlinear conductance of quantum point contacts. Applied Physics Letters, 2007, 90, 043103.	3.3	10
130	One-dimensional resistive states in quasi-two-dimensional superconductors: Experiment and theory. Physical Review B, 2007, 76, .	3.2	38
131	Novel many-body state in quantum wires near pinch-off. AIP Conference Proceedings, 2007, , .	0.4	O
132	Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 84-91.	2.7	0
133	Resonance modulation of the intersubband electron-electron interaction in an AlSb(\hat{l} -Te)/InAs/AsSb(\hat{l} -Te) quantum well by magnetic field. Semiconductors, 2007, 41, 327-334.	0.5	O
134	Fano resonances in the system of coupled point contacts. Journal of Computer-Aided Materials Design, 2007, 14, 97-101.	0.7	0
135	Classical and quantum mechanical transport simulations in open quantum dots. Journal of Computational Electronics, 2007, 6, 93-96.	2.5	7
136	Novel FET Structures Based on Bundled C60 nanowhiskers. AIP Conference Proceedings, 2007, , .	0.4	1
137	Linear conductance of quantum point contacts with deliberately broken symmetry. Journal of Physics Condensed Matter, 2006, 18, 1715-1724.	1.8	23
138	Influence of Realistic Potential Profile of Coupled Electron Waveguide on Electron Switching Characteristics. IEEE Nanotechnology Magazine, 2006, 5, 712-715.	2.0	8
139	Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems. Applied Physics Letters, 2006, 89, 132109.	3.3	20
140	Novel phenomena in one-dimensional non-linear transport in long quantum wires. Journal of Physics: Conference Series, 2006, 38, 83-86.	0.4	0
141	The influence of Coulomb interaction in quantum point contacts. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 557-559.	2.7	0
142	Spin-polarized transport through a quantum point contact in strongly quantizing magnetic fields: mimicking the 0.7 scenario. Journal of Physics Condensed Matter, 2006, 18, 3277-3284.	1.8	7
143	Resonantly Enhanced Nonlinear Conductance in Long Quantum Point Contacts near Pinch-Off. Physical Review Letters, 2006, 97, 096801.	7.8	13
144	Quantum asymmetry of switching in laterally coupled quantum wires with tunable coupling strength. Applied Physics Letters, 2006, 89, 153128.	3.3	10

#	Article	IF	CITATIONS
145	Electrical properties of field-effect transistors based on C60 nanowhiskers. Applied Physics Letters, 2006, 88, 112109.	3.3	80
146	Large capacitance in the nanosecond-scale transient response of quantum point contacts. Applied Physics Letters, 2006, 89, 083103.	3.3	26
147	Switching characteristics of coupled quantum wires with tunable coupling strength. Applied Physics Letters, 2006, 89, 013118.	3.3	19
148	Dephasing due to coupling to the external environment in open quantum-dot arrays. Journal of Physics Condensed Matter, 2005, 17, L351-L357.	1.8	12
149	Infrared light-induced beating of Shubnikov–de Haas oscillations in MBE grown InAs/AlSb quantum wells. Journal of Crystal Growth, 2005, 278, 661-665.	1.5	1
150	Cyclotron Resonance in Doped and Undoped InAsâ^•AlSb Heterostructures with Quantum Wells. Semiconductors, 2005, 39, 62.	0.5	16
151	Unusual Persistent Photoconductivity in the InAsâ [•] AlSb Quantum Well. Semiconductors, 2005, 39, 95.	0.5	1
152	50-Ω-matched system for low-temperature measurements of the time-resolved conductance of low-dimensional semiconductors. Review of Scientific Instruments, 2005, 76, 113905.	1.3	8
153	Chaotic Behavior in Quantum Transport Devices. AIP Conference Proceedings, 2005, , .	0.4	0
154	Magnetoresistance experiments and quasi-classical calculations regarding backscattering in open quantum dots. AIP Conference Proceedings, 2005, , .	0.4	0
155	Influence of magnetic moment formation on the conductance of coupled quantum wires. Journal of Physics Condensed Matter, 2005, 17, 5269-5284.	1.8	6
156	Einselection and the quantum to classical transition in quantum dots. Journal of Physics Condensed Matter, 2005, 17, S1017-S1036.	1.8	21
157	Propagation of electron waves in InAs/AlGaSb. AIP Conference Proceedings, 2005, , .	0.4	0
158	A nanowire magnetic memory cell based on a periodic magnetic superlattice. Journal of Physics Condensed Matter, 2005, 17, 5263-5268.	1.8	4
159	Readout of single spins via Fano resonances in quantum point contacts. Applied Physics Letters, 2005, 87, 192501.	3.3	14
160	Manipulating the transmission of a two-dimensional electron gas via spatially varying magnetic fields. Applied Physics Letters, 2005, 86, 062106.	3.3	19
161	Large negative persistent photoconductivity in InAsâ [•] AlSb quantum wells. Applied Physics Letters, 2005, 86, 192109.	3.3	12
162	Signatures of bandlike tunneling in granular nanowires. Physical Review B, 2005, 72, .	3.2	8

#	Article	IF	Citations
163	Evidence of double layer quantum dot formation in a silicon-on-insulator nanowire transistor. Applied Physics Letters, 2005, 86, 043101.	3.3	4
164	Electron Dynamics in a Coupled Quantum-Point Contact Structure With a Local Magnetic Moment. IEEE Nanotechnology Magazine, 2005, 4, 21-26.	2.0	1
165	Investigating dynamical tunnelling in open quantum dots by means of a soft-walled microwave-cavity analogue. Journal of Physics Condensed Matter, 2005, 17, L191-L198.	1.8	8
166	Coupled quantum wires as a detector of many-body states below the last conductance plateau. Semiconductor Science and Technology, 2004, 19, S405-S408.	2.0	6
167	Einselection in Action: Decoherence and Pointer States in Open Quantum Dots. Physical Review Letters, 2004, 93, 026803.	7.8	74
168	Large effects due to electron–phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. Applied Physics Letters, 2004, 84, 3828-3830.	3.3	33
169	Detection of Local-Moment Formation Using the Resonant Interaction between Coupled Quantum Wires. Physical Review Letters, 2004, 92, 096802.	7.8	32
170	Signatures of quantum transport in self-assembled epitaxialnickel silicide nanowires. Applied Physics Letters, 2004, 85, 281-283.	3.3	39
171	Magnetically induced Bragg scattering of electrons in quantum-dot crystals. Physical Review B, 2004, 70, .	3.2	19
172	PHYSICS: Electron Spin Polarization in Nanoscale Constrictions. Science, 2004, 303, 1621-1622.	12.6	43
173	Fractal behavior in magnetoconductance in coupled quantum dot systems. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 361-364.	2.7	1
174	Interaction of microwaves with backscattering orbits in open quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 514-517.	2.7	1
175	Quantum dots: applications in technology and in quantum physics. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 298-302.	2.7	10
176	Novel Many-Body Transport Phenomenon in Coupled Quantum Wires. IEEE Nanotechnology Magazine, 2004, 3, 110-114.	2.0	1
177	Guest editor's foreword. Superlattices and Microstructures, 2003, 34, 147.	3.1	0
178	Single-electron tunneling in silicon-on-insulator nano-wire transistors. Superlattices and Microstructures, 2003, 34, 245-251.	3.1	1
179	Quantum interference on electron wave spreading over a coupled dot. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 89-90.	2.7	0
180	Self-similar conductance fluctuations in low temperature magneto-transport of coupled dot systems. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 147-148.	2.7	2

#	Article	IF	CITATIONS
181	Landau-level depopulation and high-field magneto-resistance of open quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 197-201.	2.7	0
182	Non-invasive study of transport in open quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 202-205.	2.7	0
183	A model for interaction corrections to transport through open quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 206-209.	2.7	1
184	Magneto-conductance fluctuations in a V-grooved GaAs quantum-wire. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 102-106.	2.7	1
185	Low-temperature decoherence in disordered Pt nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 112-116.	2.7	12
186	Fractal conductance fluctuations in a quantum-dot molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 221-224.	2.7	1
187	Transport study of ultra-thin SOI MOSFETs. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 39-43.	2.7	3
188	Transport in quantum dots. Materials Today, 2003, 6, 32-37.	14.2	4
189	Interference and interactions in open quantum dots. Reports on Progress in Physics, 2003, 66, 583-632.	20.1	58
190	Quantum-effect and single-electron devices. IEEE Nanotechnology Magazine, 2003, 2, 368-385.	2.0	49
191	Nonlinear current-voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition. Applied Physics Letters, 2003, 83, 4426-4428.	3.3	82
192	Scanning Fourier spectroscopy: A microwave analog study to image transmission paths in quantum dots. Physical Review B, 2003, 68, .	3.2	24
193	Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Applied Physics Letters, 2003, 82, 802-804.	3.3	87
194	Signatures of dynamical tunneling in semiclassical quantum dots. Physical Review E, 2003, 68, 026221.	2.1	9
195	Nonlocal resonant interaction between coupled quantum wires. Applied Physics Letters, 2003, 82, 3952-3954.	3.3	50
196	Fano resonances in open quantum dots and their application as spin filters. Applied Physics Letters, 2003, 82, 4561-4563.	3.3	79
197	A model for many-body interaction effects in open quantum dot systems. Journal of Physics Condensed Matter, 2003, 15, 147-158.	1.8	6
198	Generalized interfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1891.	1.6	4

#	Article	IF	Citations
199	On the Influence of Resonant States on Ballistic Transport in Open Quantum Dots: Spectroscopy and Tunneling in the Presence of Multiple Conducting Channels. , 2003, , 209-276.		15
200	Fractal Transport Behavior in Coupled-Dot System. Journal of the Physical Society of Japan, 2003, 72, 203-204.	1.6	0
201	Experimental studies of the electron–phonon interaction in InGaAs quantum wires. Applied Physics Letters, 2002, 81, 727-729.	3.3	30
202	Interaction corrections to transport due to quasibound states in open quantum dots. Applied Physics Letters, 2002, 81, 3861-3863.	3.3	6
203	Influence of interdot coupling on electron-wave interference in an open quantum-dot molecule. Applied Physics Letters, 2002, 80, 2970-2972.	3.3	16
204	Wave function scarring in open quantum dots: A microwave-billiard analog study. Physical Review B, 2002, 65, .	3.2	59
205	Tunneling and Nonhyperbolicity in Quantum Dots. Physical Review Letters, 2002, 88, 236804.	7.8	72
206	Large g-factor enhancement in high-mobility InAs/AlSb quantum wells. Applied Physics Letters, 2002, 81, 1833-1835.	3.3	47
207	Quantum-interference characteristics of a 25 nm trench-type InGaAs/InAlAs quantum-wire field-effect transistor. Applied Physics Letters, 2002, 80, 434-436.	3.3	30
208	Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. Journal of Physics Condensed Matter, 2002, 14, R501-R596.	1.8	310
209	Trench-type InGaAs quantum-wire field effect transistor with negative differential conductance fabricated by hydrogen-assisted molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1192.	1.6	1
210	The persistence of eigenstates in open quantum dots. Applied Physics Letters, 2002, 81, 129-131.	3.3	53
211	A drastic change of the effective g-value in nanostructure system: Zeeman attenuator. Physica B: Condensed Matter, 2002, 314, 235-238.	2.7	0
212	Variation of the temperature dependence of the energy-relaxation time with magnetic field in open quantum dot arrays at low temperatures. Physica B: Condensed Matter, 2002, 314, 486-489.	2.7	1
213	Non-weak-localization signature in the average conductance of open quantum-dot arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 630-633.	2.7	0
214	Magneto-conductance in dot array system at high-magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 769-772.	2.7	1
215	Numerical simulations of magneto transport in dot array systems at high magnetic fields. Microelectronic Engineering, 2002, 63, 91-95.	2.4	1
216	Can Kondo-like behavior occur in open quantum dots?. Microelectronic Engineering, 2002, 63, 277-286.	2.4	4

#	Article	IF	CITATIONS
217	Experimental Signatures of Wavefunction Scarring in Open Semiconductor Billiards. Physica Scripta, 2001, T90, 50.	2.5	4
218	Resonant peaks in quantum Hall transport in quantum dot arrays. Physica B: Condensed Matter, 2001, 298, 56-59.	2.7	1
219	Magneto-Conductance Oscillations in Open Quantum Dot Arrays. Physica Status Solidi (B): Basic Research, 2001, 224, 711-714.	1.5	0
220	Magnetic-Field-Driven Transitions of Chaotic Dynamics in Quantum Cavities. Physica Status Solidi (B): Basic Research, 2001, 224, 471-474.	1.5	1
221	Beating of the Shubnikov-de Haas Oscillations in GaAs/AlGaAs Quantum-Dot Arrays. Japanese Journal of Applied Physics, 2001, 40, 1990-1993.	1.5	0
222	Evolution of Fractal Patterns during a Classical-Quantum Transition. Physical Review Letters, 2001, 87, 036802.	7.8	57
223	Coupling-driven transition from multiple to single-dot interference in open quantum-dot arrays. Physical Review B, 2001, 64, .	3.2	25
224	Signatures of the discrete level spectrum in temperature-dependent transport through open quantum-dot arrays. Physical Review B, 2001, 64, .	3.2	16
225	Quasi-one-dimensional transport characteristics of ridge-type InGaAs quantum-wire field-effect transistors. Applied Physics Letters, 2001, 79, 371-373.	3.3	11
226	Confinement-induced enhancement of electron-electron interactions in open quantum-dot arrays. Physical Review B, 2001, 63, .	3.2	15
227	Metal–insulator transition in quantum dot arrays. Superlattices and Microstructures, 2000, 27, 311-314.	3.1	2
228	Phase-breaking time variations with temperature and current in an open quantum dot array. Superlattices and Microstructures, 2000, 27, 315-318.	3.1	2
229	Current effects on high magnetic field resonances in a dot array. Superlattices and Microstructures, 2000, 27, 327-330.	3.1	2
230	Magneto-transport in corrugated quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 750-755.	2.7	8
231	Insulating state in open quantum dots and quantum dot arrays. Annalen Der Physik, 2000, 9, 65-68.	2.4	2
232	Signatures of coherent electron transport in open quantum dot arrays. Nanotechnology, 2000, 11, 365-369.	2.6	5
233	Application of split-gate structures as tunable spin filters. Applied Physics Letters, 2000, 77, 1050.	3.3	71
234	Phase breaking and energy relaxation in open quantum-dot arrays. Physical Review B, 2000, 62, 15356-15358.	3.2	15

#	Article	IF	CITATIONS
235	Magnetic-field-controlled electron dynamics in quantum cavities. Physical Review B, 2000, 62, 10255-10259.	3.2	17
236	Modeling of Electron Transport in Corrugated Quantum Wires. Japanese Journal of Applied Physics, 1999, 38, 325-327.	1.5	3
237	Zero field magnetoresistance peaks in open quantum dots: weak localization or a fundamental property?. Journal of Physics Condensed Matter, 1999, 11, 4657-4664.	1.8	6
238	Zero Field Magnetoresistance Peaks in Open Quantum Dots: Weak Localization or a Fundamental Property?. Japanese Journal of Applied Physics, 1999, 38, 328-331.	1.5	3
239	Lead-Orientation-Dependent Wave Function Scarring in Open Quantum Dots. Physical Review Letters, 1999, 82, 4691-4694.	7.8	131
240	Magnetoprobing of the discrete level spectrum of open quantum dots. Physical Review B, 1999, 60, 13676-13681.	3.2	19
241	Localization effect in mesoscopic quantum dots and quantum-dot arrays. Physical Review B, 1999, 60, R16299-R16302.	3.2	18
242	Saturation of Phase Breaking in an Open Ballistic Quantum Dot. Physical Review Letters, 1999, 82, 4687-4690.	7.8	76
243	Weak localization in ballistic quantum dots. Physical Review B, 1999, 60, 2680-2690.	3. 2	27
244	Evidence for a reentrant metal-insulator transition in quantum-dot arrays. Physical Review B, 1999, 60, 16050-16057.	3.2	18
245	Theoretical Considerations of Electron Transport in Single and Multiple Quantum Dots. Japanese Journal of Applied Physics, 1999, 38, 303-307.	1.5	9
246	Probing the Discrete Level Spectrum of Open Quantum Dots. Japanese Journal of Applied Physics, 1999, 38, 322-324.	1.5	12
247	Hot carrier scaling of localization in a quantum dot array. Physica B: Condensed Matter, 1999, 272, 49-52.	2.7	3
248	Recent experimental studies of electron transport in open quantum dots. Journal of Physics Condensed Matter, 1999, 11, R413-R437.	1.8	26
249	Low-temperature magnetotransport in ballistic quantum dots and wires. Semiconductor Science and Technology, 1998, 13, A15-A17.	2.0	3
250	Environmental coupling and phase breaking in open quantum dots. Journal of Physics Condensed Matter, 1998, 10, L55-L61.	1.8	15
251	Geometry-induced fractal behaviour in a semiconductor billiard. Journal of Physics Condensed Matter, 1998, 10, 1339-1347.	1.8	29
252	Intrinsic stable orbits in open quantum dots. Semiconductor Science and Technology, 1998, 13, A4-A6.	2.0	4

#	Article	IF	CITATIONS
253	The effect of mode coupling on conductance fluctuations in ballistic quantum dots. Semiconductor Science and Technology, 1998, 13, A11-A14.	2.0	2
254	Size-dependent effects on the magnetotransport fluctuations of square quantum dots. Semiconductor Science and Technology, 1998, 13, A21-A23.	2.0	9
255	Scale factor mapping of statistical and exact self-similarity in billiards. Semiconductor Science and Technology, 1998, 13, A41-A43.	2.0	3
256	Akis, Ferry, and Bird Reply:. Physical Review Letters, 1998, 81, 1745-1745.	7.8	11
257	Exact and statistical self-similarity in magnetoconductance fluctuations: A unified picture. Physical Review B, 1998, 58, 11107-11110.	3.2	12
258	Ballistic Weak Localization and Wave Function Scarring in Quantum Wires. Japanese Journal of Applied Physics, 1998, 37, 1657-1659.	1.5	0
259	Trajectory Transition Due to Gate Depletion in Corrugation Gated Quantum Wires. Japanese Journal of Applied Physics, 1997, 36, 1746-1748.	1.5	3
260	Phase Breaking of Coherent Electron Waves in Dot Array Systems. Japanese Journal of Applied Physics, 1997, 36, 3971-3973.	1.5	3
261	Wave Function Scarring in Open Ballistic Quantum Dots. Japanese Journal of Applied Physics, 1997, 36, 3981-3985.	1.5	9
262	Periodic conductance fluctuations and lead-induced scarring in open quantum dots. Journal of Physics Condensed Matter, 1997, 9, 5935-5950.	1.8	18
263	The Role of Electron Phase Coherence in Quantum Transport through Open Ballistic Cavities. Japanese Journal of Applied Physics, 1997, 36, 3968-3970.	1.5	0
264	Giant back-scattering resonances in edge-state transport through quantum dots. Physical Review B, 1997, 56, 7477-7484.	3.2	10
265	Backscattering of ballistic electrons in a corrugated-gate quantum wire. Physical Review B, 1997, 56, 1073-1076.	3.2	20
266	Wave Function Scarring Effects in Open Stadium Shaped Quantum Dots. Physical Review Letters, 1997, 79, 123-126.	7.8	127
267	Magnetically induced suppression of phase breaking in ballistic mesoscopic billiards. Physical Review B, 1997, 55, 1368-1371.	3.2	15
268	Phase breaking of nonequilibrium electrons in a ballistic quantum dot. Physical Review B, 1997, 56, 14937-14940.	3.2	6
269	Carrier Transport in Nanodevices. Japanese Journal of Applied Physics, 1997, 36, 1841-1845.	1.5	10
270	Quantum Transport in Single and Multiple Quantum Dots. Japanese Journal of Applied Physics, 1997, 36, 3944-3950.	1.5	15

#	Article	IF	Citations
271	Phase Breaking in a Quantum Billiard. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 937-943.	1.7	0
272	Phase Breaking as a Probe of the Intrinsic Level Spectrum of Open Quantum Dots. Physica Status Solidi (B): Basic Research, 1997, 204, 314-317.	1.5	13
273	Non-Equilibrium Electrons in a Ballistic Quantum Dot. Physica Status Solidi (B): Basic Research, 1997, 204, 318-321.	1.5	9
274	Low temperature magnetoresistance in corrugation gated wires. European Physical Journal D, 1996, 46, 2347-2348.	0.4	0
275	Carrier scattering processes in quantum wires at high magnetic fields by a correlation field analysis. Physica B: Condensed Matter, 1996, 216, 376-379.	2.7	1
276	Giant Backscattering Magnetoresistance Resonance and Quantum Dot Electronic Structure. Physical Review Letters, 1996, 76, 2145-2148.	7.8	28
277	Precise period doubling of the Aharonov-Bohm effect in a quantum dot at high magnetic fields. Physical Review B, 1996, 53, 3642-3645.	3.2	12
278	Magnetotransport fluctuations in regular semiconductor ballistic quantum dots. Physical Review B, 1996, 54, 17705-17715.	3.2	125
279	Periodic conductance fluctuations and stable orbits in mesoscopic semiconductor billiards. Europhysics Letters, 1996, 35, 529-534.	2.0	65
280	The use of wide ballistic cavities to investigate local weak localization processes induced by geometric scattering. Semiconductor Science and Technology, 1996, 11, 1189-1197.	2.0	3
281	Illumination-induced inhomogeneity in the carrier density profile of split gate devices. Semiconductor Science and Technology, 1996, 11, 1085-1089.	2.0	1
282	The effects of inelastic scattering in open quantum dots: reduction of conductance fluctuations and disruption of wave-function `scarring'. Journal of Physics Condensed Matter, 1996, 8, L667-L674.	1.8	32
283	Zero-Current Voltage Fluctuations in Quantum Dots at High Magnetic Fields. Journal of the Physical Society of Japan, 1995, 64, 3618-3621.	1.6	2
284	Spectral characteristics of conductance fluctuations in ballistic quantum dots: The influence of finite magnetic field and temperature. Physical Review B, 1995, 52, 8295-8304.	3.2	30
285	Phase breaking in ballistic quantum dots: Transition from two- to zero-dimensional behavior. Physical Review B, 1995, 51, 18037-18040.	3.2	73
286	Breakdown of correlated diffusion in quasiballistic quantum wires at high magnetic fields. Physical Review B, 1995, 52, 1793-1799.	3.2	19
287	Lead-induced transition to chaos in ballistic mesoscopic billiards. Physical Review B, 1995, 52, R14336-R14339.	3.2	42
288	Correlation Field Analysis of the Influence of Device Geometry and Bulk Disorder on Electron Interference in Quantum Wires. Japanese Journal of Applied Physics, 1995, 34, 1339-1341.	1.5	6

#	Article	IF	CITATIONS
289	Study of Scattering Processes in Quantum Wires by a Correlation Field Analysis of the Phase Coherent Interferences. Japanese Journal of Applied Physics, 1995, 34, 4345-4347.	1.5	5
290	Empirical Correlation Between T c and the Temperature Dependence of the Electronic Specific Heat of Superconducting La 2- x Sr x CuO 4 at Low Temperatures. Europhysics Letters, 1995, 29, 383-388.	2.0	7
291	Electron Wave Interference in Ballistic and Quasi-Ballistic Nanostructures. Japanese Journal of Applied Physics, 1995, 34, 6966.	1.5	3
292	The Magnetic Field Dependent Characteristics of Conductance Fluctuations in Ballistic Quantum Dots. Japanese Journal of Applied Physics, 1995, 34, 4342-4344.	1.5	1
293	Electron Wave Interference in Ballistic and Quasi-Ballistic Nanostructures. Japanese Journal of Applied Physics, 1995, 34, 6966-6970.	1.5	3
294	Observation of Aharonov-Bohm Oscillations in the Magnetoresistance of a GaAs/AlGaAs Quantum Dot. Japanese Journal of Applied Physics, 1994, 33, 2509-2510.	1.5	4
295	Coulomb blockade of the Aharonov-Bohm effect in GaAs/AlxGa1â^xAs quantum dots. Physical Review B, 1994, 50, 14983-14990.	3.2	30
296	Magneto-Coulomb oscillations. Physical Review B, 1994, 49, 11488-11491.	3.2	10
297	Spectral characteristics of conductance fluctuations in ballistic quantum dots. Physical Review B, 1994, 50, 18678-18681.	3.2	36
298	The Transmission Properties of Quantum Dots at High Magnetic Fields. Japanese Journal of Applied Physics, 1993, 32, 6246-6250.	1.5	6
299	Scaling properties of universal conductance fluctuations in quasiballistic split-gate wires: Probing geometrical effects. Physical Review B, 1993, 48, 12353-12356.	3.2	12
300	Conductance Fluctuations in GaAs/AlGaAs Narrow Wires in Quasi-Ballistic Regime. Japanese Journal of Applied Physics, 1992, 31, 4504-4507.	1.5	6
301	The low-temperature analysis of narrow GaAs/AlGaAs heterojunction wires. Journal of Physics Condensed Matter, 1991, 3, 2897-2906.	1.8	23
302	Conductance fluctuations and non-diffusive motion in GaAs/AlGaAs heterojunction wires. Journal of Physics Condensed Matter, 1990, 2, 7847-7852.	1.8	27
303	Transmission in nanostructures. , 0, , 116-192.		1
304	The quantum Hall effects., 0,, 193-247.		1
305	Ballistic transport in quantum wires. , 0, , 248-298.		0
306	Quantum dots., 0,, 299-412.		1

ARTICLE IF CITATIONS
307 Temperature decay of fluctuations., 0,, 491-562.