Yaovi Gagou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural, dielectric, ferroelectric and electrical properties of lead-free Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic prepared by sol–gel method. Materials Today: Proceedings, 2022, 51, 2059-2065.	1.8	2
2	The structural, dielectric, electrocaloric, and energy storage properties of lead-free Ba0·90Ca0·10Zr0·15Ti0·85O3. Ceramics International, 2022, 48, 3157-3171.	4.8	10
3	Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method. Journal of Materials Science: Materials in Electronics, 2022, 33, 2067-2079.	2.2	8
4	Impact of annealing on electrocaloric response in Lanthanum-modified lead zirconate titanate ceramic. Journal of Alloys and Compounds, 2022, 907, 164517.	5.5	2
5	Nanostructured BaTi1-xSnxO3 ferroelectric materials for electrocaloric applications and energy performance. Current Applied Physics, 2022, 38, 59-66.	2.4	2
6	Enhanced electrocaloric and energy-storage properties of environment-friendly ferroelectric Ba0.9Sr0.1Ti1â^'xSnxO3 ceramics. Materials Today Communications, 2022, 31, 103351.	1.9	3
7	Improvement of the electrocaloric effect and energy storage performances in Pb-free ferroelectric Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic near room temperature. Journal of Solid State Chemistry, 2022, 311, 123112.	2.9	9
8	Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Physica B: Condensed Matter, 2021, 603, 412760.	2.7	30
9	Structural, dielectric and energy storage properties of Neodymium niobate with tetragonal tungsten bronze structure. Physica B: Condensed Matter, 2021, 618, 413185.	2.7	17
10	Characterization and Phase Diagram of the Tetragonal Tungsten Bronze Type Ferroelectric Compounds Pb2(1â^'x)GdxK1+xNb5O15 for Energy Storage Applications. , 2020, , 401-412.		0
11	Investigation of Polyol Process for the Synthesis of Highly Pure BiFeO3 Ovoid-Like Shape Nanostructured Powders. Nanomaterials, 2020, 10, 26.	4.1	4
12	Structural, dielectric, ferroelectric and tuning properties of Pb-free ferroelectric Ba0.9Sr0.1Ti1-xSnxO3. Ceramics International, 2020, 46, 27275-27282.	4.8	8
13	Structural, dielectric and magnetic studies of (0–3) type multiferroic (1Ââ^'Âx) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0 â‰â€‰x â‰â€‰1) composite ceramics. Journal of Materials Science: Materials ir 2020, 31, 19343-19354.	ז בו פכtroni	ic s ,
14	Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1â^'xO3 (x = 0)	Ţj ĘTQq0	0.0 rgBT /Ov
15	Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10096-10104.	2.2	31
16	Electrocaloric response in lanthanum-modified lead zirconate titanate ceramics. Journal of Applied Physics, 2020, 127, .	2.5	9
17	Properties of layered structures based on barium titanate. Ferroelectrics, 2020, 561, 135-141.	0.6	1

Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. Journal of
Advanced Ceramics, 2020, 9, 210-219.

#	Article	IF	CITATIONS
19	Structural, Dielectric, and Magnetic Properties of Multiferroic (\$1 - x\$) La0.5Ca0.5MnO3-(\$x\$) BaTi0.8Sn0.2O3 Laminated Composites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1935-1941.	3.0	3
20	Switching Properties of Ferroelectric Perovskite Superlattices. Ferroelectrics, 2019, 544, 43-48.	0.6	3
21	Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1â^xSnx)O3 ceramics elaborated by sol–gel method. Journal of Materials Science: Materials in Electronics, 2019, 30, 14099-14111.	2.2	11
22	Synthesis of La0.5Ca0.5â	2.2	5
23	Study of the Oxidation Process of Crystalline Powder of In2S3 and Thin Films Obtained by Dr Blade Method. Journal of Electronic Materials, 2019, 48, 4715-4725.	2.2	6
24	Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. Journal of Materials Science: Materials in Electronics, 2019, 30, 6430-6438.	2.2	58
25	Repolarization of Ferroelectric Superlattices BaZrO3/BaTiO3. Scientific Reports, 2019, 9, 18948.	3.3	7
26	Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0,85Ca0,15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlattices and Microstructures, 2019, 127, 71-79.	3.1	14
27	Impedance spectroscopy studies on lead free Ba 1-x Mg x (Ti 0.9 Zr 0.1)O 3 ceramics. Superlattices and Microstructures, 2018, 118, 45-54.	3.1	5
28	Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1-xLa2x/3TiO3 ferroelectric ceramics. Journal of Alloys and Compounds, 2018, 730, 501-508.	5.5	27
29	Dielectric Properties and Switching Processes of Barium Titanate–Barium Zirconate Ferroelectric Superlattices. Materials, 2018, 11, 1436.	2.9	6
30	Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition. Materials and Design, 2017, 122, 157-163.	7.0	20
31	Lead free Ba0.8Ca0.2TexTi1â^xO3 ferroelectric ceramics exhibiting high electrocaloric properties. Journal of Applied Physics, 2017, 121, .	2.5	9
32	Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. Journal of Alloys and Compounds, 2017, 713, 164-179.	5.5	62
33	Structural and electrical properties of K3Li2Nb5O15 thin film grown by pulsed laser deposition. Materials Research Bulletin, 2017, 94, 287-290.	5.2	2
34	Structural and optical properties of Pb2KNb5O15 and GdK2Nb5O15 tungsten bronze thin films grown by pulsed laser deposition. Journal of Alloys and Compounds, 2017, 724, 1070-1074.	5.5	2
35	Oxygen-deficient GdK 2 Nb 5 O 15 ferroelectric epitaxial thin film. Europhysics Letters, 2016, 116, 67001.	2.0	1
36	Study ofAandBsites order in lanthanide-doped lead titanate ferroelectric system. Powder Diffraction, 2016, 31, 23-30.	0.2	1

#	Article	IF	CITATIONS
37	Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solid solution. Solid State Communications, 2016, 237-238, 49-54.	1.9	16
38	Investigation of diffuse phase transition in ferroelectric Pb2â^'x K1+x Li x Nb5O15 (0Ââ‰ÂxÂâ‰Â1.5) ceramics. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	1
39	Bipolar resistive switching and substrate effect in GdK 2 Nb 5 O 15 epitaxial thin films with tetragonal tungsten bronze type structure. Materials and Design, 2016, 112, 80-87.	7.0	15
40	Ferrielectricity in smectic-C*dechiralization-line lattices. Physical Review E, 2016, 93, 042704.	2.1	1
41	Raman spectroscopy investigation on (Pb1La)(Zr0.90Ti0.10)1â^'/4O3 ceramic system. Vibrational Spectroscopy, 2016, 86, 124-127.	2.2	8
42	Indirect and direct electrocaloric measurements of (Ba1â^'xCax)(Zr0.1Ti0.9)O3 ceramics (xÂ=Â0.05, xÂ=Â0.20). Journal of Alloys and Compounds, 2016, 667, 198-203.	5.5	45
43	Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1â^'x Sn x O3 ceramics solid solution. Journal of Materials Science, 2016, 51, 3454-3462.	3.7	30
44	Dielectric behaviour and dechiralization lines dynamics of a pure Smectic-C* in confined geometry: onset of mesoscopic ferrielectricity. Liquid Crystals, 2016, 43, 639-647.	2.2	2
45	Electrocaloric effect in Ba _{0.2} Ca _{0.8} Ti _{0.95} Ge _{0.05} O ₃ determined by a new pyroelectric method. Europhysics Letters, 2015, 111, 57008.	2.0	17
46	Lead-free Ba0.8Ca0.2(ZrxTi1â^'x)O3 ceramics with large electrocaloric effect. Applied Physics Letters, 2015, 106, .	3.3	127
47	Vibrational analysis on two-layer Aurivillius phase Sr1â~'xBaxBi2Nb2O9 using Raman spectroscopy. Vibrational Spectroscopy, 2015, 77, 1-4.	2.2	14
48	Electro-caloric effect in lead-free ferroelectric Ba1â^'Ca (Zr0.1Ti0.9)0.925 Sn0.075O3 ceramics. Ceramics International, 2015, 41, 15103-15110.	4.8	38
49	Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1â^'Sn O3 (x=0, x=0.075) ceramics. Solid State Communications, 2015, 201, 64-67.	1.9	60
50	Structural and electrical properties of Bi0.5Na0.5 TiO3 based superlattices grown by pulsed laser deposition. Journal of Applied Physics, 2014, 116, .	2.5	9
51	Giant increase of ferroelectric phase transition temperature in highly strained ferroelectric [BaTiO ₃] _{0.7î›} /[BaZrO ₃] _{0.3î›} superlattice. Europhysics Letters, 2014, 106, 17004.	2.0	11
52	Highly constrained ferroelectric [BaTiO3](1â^'x)ĥ/[BaZrO3]xĥ superlattices: X-ray diffraction and Raman spectroscopy. Journal of Applied Physics, 2014, 116, 034108.	2.5	13
53	On the nature of phase transitions in the tetragonal tungsten bronze GdK ₂ Nb ₅ O ₁₅ ceramics. Journal of Applied Physics, 2014, 115, 064104.	2.5	31
54	Structural and dielectric properties of a new lead-free ferroelectric Ba0.8Ca0.2Ti0.8Ge0.2O3 ceramics. Superlattices and Microstructures, 2014, 71, 162-167.	3.1	11

#	Article	IF	CITATIONS
55	Resistive switching in a (00â,,")-oriented GdK2Nb5O15 thin film with tetragonal tungsten bronze type structure. Superlattices and Microstructures, 2014, 72, 35-42.	3.1	5
56	From normal ferroelectric transition to relaxor behavior in Aurivillius ferroelectric ceramics. Journal of Materials Science, 2014, 49, 7437-7444.	3.7	15
57	Investigation on relaxation and conduction mechanism in Pb0.75K0.5Nb2O6 new ferroelectric ceramic. Superlattices and Microstructures, 2014, 71, 7-22.	3.1	29
58	X-ray diffraction, dielectric and Raman spectroscopy studies of Ba1â^'xNd2x/3(Ti0.9Zr0.1)O3 ceramics. Ceramics International, 2014, 40, 10255-10261.	4.8	20
59	Synthesis of In ₂ S _{3(1-<i>x</i>)} O _{3<i>x</i>} thin films by oxidation of In ₂ S ₃ film and influence of film microstructure. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2865-2870.	1.8	2
60	Thermally stimulated processes in samarium-modified lead titanate ferroelectric ceramics. Applied Physics A: Materials Science and Processing, 2013, 112, 419-423.	2.3	1
61	Resistive Switching Hysteresis in Thin Films of Bismuth Ferrite. Ferroelectrics, 2013, 444, 183-189.	0.6	5
62	Studies of Diffuse Phase Transition in Ferroelectric Solid Solution Pb _{1-x} K _{2x} Nb ₂ O ₆ (x = 0.1, 0.2, 0.25 and 0.3). Ferroelectrics, 2013, 444, 116-124.	0.6	10
63	Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. European Physical Journal B, 2012, 85, 1.	1.5	22
64	X-ray diffraction, dielectric, conduction and Raman studies in Na0.925Bi0.075Nb0.925Mn0.075O3 ceramic. Journal of Applied Physics, 2012, 111, 044101.	2.5	10
65	Dielectric and structural properties of diffuse ferroelectric phase transition in Pb _{1.85} K _{1.15} Li _{0.15} Nb ₅ O ₁₅ ceramic. EPJ Applied Physics, 2011, 53, 20901.	0.7	4
66	Phase diagram and dielectric properties of ferroelectric ceramics. Superlattices and Microstructures, 2011, 49, 300-306.	3.1	10
67	Study of the ceramics by X-ray diffraction, dielectric and Raman spectroscopy. Solid State Communications, 2011, 151, 763-767.	1.9	8
68	Structural and Raman properties of the tetragonal tungsten bronze ferroelectric. Solid State Communications, 2010, 150, 419-423.	1.9	30
69	Monte Carlo Study of Ferroelectric Properties of Tetragonal Tungsten Bronze Compounds. Ferroelectrics, 2010, 397, 1-8.	0.6	5
70	Ferroelectric BaTiO3/BaZrO3 superlattices: X-ray diffraction, Raman spectroscopy, and polarization hysteresis loops. Journal of Applied Physics, 2010, 108, 084104.	2.5	30
71	Ionic Conduction Properties in PbK2LiNb5O15. Ferroelectrics, 2008, 371, 17-20.	0.6	5
72	Anomalies of Thermal Dilatation and Domain Structure in the Multiferroic Material PbK ₂ LiNb ₅ O ₁₅ . Ferroelectrics, 2008, 376, 17-24.	0.6	3

#	Article	IF	CITATIONS
73	Ferroelectric Phases in Rare-Earth TTB Ferroelectric Compounds Pb _{2(1 - x)} K _{(1 +) Tj ETQq1 1}	0.784314	rgBJ /Overloo
74	Structural study of ferroelectric and paraelectric phases in PbK2LiNb5O15. Physica Status Solidi (B): Basic Research, 2004, 241, 2629-2638.	1.5	7
75	Cationic disorder, microstructure and dielectric response of ferroelectric SBT ceramics. Journal of Applied Crystallography, 2003, 36, 880-889.	4.5	21
76	H.R.E.M. Study of the Room Temperature Phase of PbK 2 LiNb 5 O 15. Ferroelectrics, 2003, 290, 83-90.	0.6	3
77	New Gadolinium Based Ferroelectric Phases Derived from the Tetragonal Tungsten Bronze (TTB). Ferroelectrics, 2003, 291, 133-139.	0.6	15
78	Magnetic-field-induced orientation in Co-doped SrBi2Ta2O9ferroelectric oxide. Journal of Physics Condensed Matter, 2002, 14, 11849-11857.	1.8	8
79	Structural and Electrical Properties of the Ferroelectric PbK 2 LiNb 5 O 15. Ferroelectrics, 2002, 268, 417-422.	0.6	0
80	Structural Evolution of Iron Phosphate as a Function of Temperature. Ferroelectrics, 2002, 269, 279-284.	0.6	6
81	A new ferroelectric compound: PbK2LiNb5O15. Ferroelectrics, 2001, 254, 197-204.	0.6	14
82	Structural change and some associated anomalies in the ferroelectric PbK2LiNb5O15. Ferroelectrics, 2001, 251, 131-137.	0.6	7
83	Structural characterization of PZT thin films and related properties. Ferroelectrics, 2001, 254, 403-410.	0.6	0
84	Synthesis and phase transitions of iron phosphate. Ferroelectrics, 2000, 241, 255-262.	0.6	37