Yaovi Gagou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572856/publications.pdf

Version: 2024-02-01

		394421	4	34195
84	1,223	19		31
papers	citations	h-index		g-index
85	85	85		952
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Lead-free Ba0.8Ca0.2(ZrxTi1â^'x)O3 ceramics with large electrocaloric effect. Applied Physics Letters, 2015, 106, .	3.3	127
2	Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. Journal of Alloys and Compounds, 2017, 713, 164-179.	5.5	62
3	Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1â^'Sn O3 (x=0, x=0.075) ceramics. Solid State Communications, 2015, 201, 64-67.	1.9	60
4	Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. Journal of Materials Science: Materials in Electronics, 2019, 30, 6430-6438.	2.2	58
5	Indirect and direct electrocaloric measurements of (Ba1â^'xCax)(Zr0.1Ti0.9)O3 ceramics (xÂ=Â0.05, xÂ=Â0.20). Journal of Alloys and Compounds, 2016, 667, 198-203.	5.5	45
6	Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. Journal of Advanced Ceramics, 2020, 9, 210-219.	17.4	45
7	Electro-caloric effect in lead-free ferroelectric Ba1â^'Ca (Zr0.1Ti0.9)0.925 Sn0.075O3 ceramics. Ceramics International, 2015, 41, 15103-15110.	4.8	38
8	Synthesis and phase transitions of iron phosphate. Ferroelectrics, 2000, 241, 255-262.	0.6	37
9	On the nature of phase transitions in the tetragonal tungsten bronze GdK ₂ Nb ₅ O ₁₅ ceramics. Journal of Applied Physics, 2014, 115, 064104.	2.5	31
10	Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10096-10104.	2.2	31
11	Structural and Raman properties of the tetragonal tungsten bronze ferroelectric. Solid State Communications, 2010, 150, 419-423.	1.9	30
12	Ferroelectric BaTiO3/BaZrO3 superlattices: X-ray diffraction, Raman spectroscopy, and polarization hysteresis loops. Journal of Applied Physics, 2010, 108, 084104.	2.5	30
13	Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1â^'x Sn x O3 ceramics solid solution. Journal of Materials Science, 2016, 51, 3454-3462.	3.7	30
14	Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Physica B: Condensed Matter, 2021, 603, 412760.	2.7	30
15	Investigation on relaxation and conduction mechanism in Pb0.75K0.5Nb2O6 new ferroelectric ceramic. Superlattices and Microstructures, 2014, 71, 7-22.	3.1	29
16	Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1-xLa2x/3TiO3 ferroelectric ceramics. Journal of Alloys and Compounds, 2018, 730, 501-508.	5.5	27
17	Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. European Physical Journal B, 2012, 85, 1.	1.5	22
18	Cationic disorder, microstructure and dielectric response of ferroelectric SBT ceramics. Journal of Applied Crystallography, 2003, 36, 880-889.	4.5	21

#	Article	IF	CITATIONS
19	X-ray diffraction, dielectric and Raman spectroscopy studies of Ba1â^'xNd2x/3(Ti0.9Zr0.1)O3 ceramics. Ceramics International, 2014, 40, 10255-10261.	4.8	20
20	Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition. Materials and Design, 2017, 122, 157-163.	7.0	20
21	Electrocaloric effect in Ba _{0.2} Ca _{0.8} Ti _{0.95} Ge _{0.05} O ₃ determined by a new pyroelectric method. Europhysics Letters, 2015, 111, 57008.	2.0	17
22	Structural, dielectric and energy storage properties of Neodymium niobate with tetragonal tungsten bronze structure. Physica B: Condensed Matter, 2021, 618, 413185.	2.7	17
23	Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solution. Solid State Communications, 2016, 237-238, 49-54.	1.9	16
24	New Gadolinium Based Ferroelectric Phases Derived from the Tetragonal Tungsten Bronze (TTB). Ferroelectrics, 2003, 291, 133-139.	0.6	15
25	From normal ferroelectric transition to relaxor behavior in Aurivillius ferroelectric ceramics. Journal of Materials Science, 2014, 49, 7437-7444.	3.7	15
26	Bipolar resistive switching and substrate effect in GdK 2 Nb 5 O 15 epitaxial thin films with tetragonal tungsten bronze type structure. Materials and Design, 2016, 112, 80-87.	7.0	15
27	A new ferroelectric compound: PbK2LiNb5O15. Ferroelectrics, 2001, 254, 197-204.	0.6	14
28	Vibrational analysis on two-layer Aurivillius phase Sr1â^'xBaxBi2Nb2O9 using Raman spectroscopy. Vibrational Spectroscopy, 2015, 77, 1-4.	2.2	14
29	Impedance spectroscopy analysis of the diffuse phase transition in lead-free (Ba0,85Ca0,15)(Zr0.1Ti0.9)O3 ceramic elaborated by sol-gel method. Superlattices and Microstructures, 2019, 127, 71-79.	3.1	14
30	Highly constrained ferroelectric [BaTiO3](1â^'x)Λ/[BaZrO3]xΛ superlattices: X-ray diffraction and Raman spectroscopy. Journal of Applied Physics, 2014, 116, 034108.	2.5	13
31	Giant increase of ferroelectric phase transition temperature in highly strained ferroelectric [BaTiO ₃] _{0.7î>} /[BaZrO ₃] _{0.3î>} superlattice. Europhysics Letters, 2014, 106, 17004.	2.0	11
32	Structural and dielectric properties of a new lead-free ferroelectric Ba0.8Ca0.2Ti0.8Ge0.2O3 ceramics. Superlattices and Microstructures, 2014, 71, 162-167.	3.1	11
33	Structural, dielectric and electrocaloric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1â^xSnx)O3 ceramics elaborated by sol–gel method. Journal of Materials Science: Materials in Electronics, 2019, 30, 14099-14111.	2.2	11
34	Phase diagram and dielectric properties of ferroelectric ceramics. Superlattices and Microstructures, 2011, 49, 300-306.	3.1	10
35	X-ray diffraction, dielectric, conduction and Raman studies in Na0.925Bi0.075Nb0.925Mn0.075O3 ceramic. Journal of Applied Physics, 2012, 111, 044101.	2.5	10
36	Studies of Diffuse Phase Transition in Ferroelectric Solid Solution $Pb \cdot sub \cdot 1-x \cdot sub \cdot K \cdot sub \cdot 2x \cdot sub \cdot Nb \cdot sub \cdot 2x \cdot sub \cdot Ox \cdot sub \cdot 6x \cdot sub \cdot (x = 0.1, 0.2, 0.25 and 0.3).$ Ferroelectrics, 2013, 444, 116-124.	0.6	10

#	Article	IF	CITATIONS
37	Enhanced electrical properties and large electrocaloric effect in lead-free Ba0.8Ca0.2ZrxTi1â^'xO3 (x = 0)	Ţį ĘTQq1	1,8.784314
38	The structural, dielectric, electrocaloric, and energy storage properties of lead-free Ba0·90Ca0·10Zr0·15Ti0·85O3. Ceramics International, 2022, 48, 3157-3171.	4.8	10
39	Structural and electrical properties of Bi0.5Na0.5 TiO3 based superlattices grown by pulsed laser deposition. Journal of Applied Physics, 2014, 116, .	2.5	9
40	Lead free Ba0.8Ca0.2TexTi1â^'xO3 ferroelectric ceramics exhibiting high electrocaloric properties. Journal of Applied Physics, 2017, 121, .	2.5	9
41	Electrocaloric response in lanthanum-modified lead zirconate titanate ceramics. Journal of Applied Physics, 2020, 127, .	2.5	9
42	Improvement of the electrocaloric effect and energy storage performances in Pb-free ferroelectric Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic near room temperature. Journal of Solid State Chemistry, 2022, 311, 123112.	2.9	9
43	Magnetic-field-induced orientation in Co-doped SrBi2Ta2O9ferroelectric oxide. Journal of Physics Condensed Matter, 2002, 14, 11849-11857.	1.8	8
44	Study of the ceramics by X-ray diffraction, dielectric and Raman spectroscopy. Solid State Communications, 2011, 151, 763-767.	1.9	8
45	Raman spectroscopy investigation on (Pb1La)(Zr0.90Ti0.10)1â°/4O3 ceramic system. Vibrational Spectroscopy, 2016, 86, 124-127.	2.2	8
46	Structural, dielectric, ferroelectric and tuning properties of Pb-free ferroelectric Ba0.9Sr0.1Ti1-xSnxO3. Ceramics International, 2020, 46, 27275-27282.	4.8	8
47	Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol–gel method. Journal of Materials Science: Materials in Electronics, 2022, 33, 2067-2079.	2.2	8
48	Structural change and some associated anomalies in the ferroelectric PbK2LiNb5O15. Ferroelectrics, 2001, 251, 131-137.	0.6	7
49	Structural study of ferroelectric and paraelectric phases in PbK2LiNb5O15. Physica Status Solidi (B): Basic Research, 2004, 241, 2629-2638.	1.5	7
50	Repolarization of Ferroelectric Superlattices BaZrO3/BaTiO3. Scientific Reports, 2019, 9, 18948.	3.3	7
51	Structural Evolution of Iron Phosphate as a Function of Temperature. Ferroelectrics, 2002, 269, 279-284.	0.6	6
52	Dielectric Properties and Switching Processes of Barium Titanate–Barium Zirconate Ferroelectric Superlattices. Materials, 2018, 11, 1436.	2.9	6
53	Study of the Oxidation Process of Crystalline Powder of In2S3 and Thin Films Obtained by Dr Blade Method. Journal of Electronic Materials, 2019, 48, 4715-4725.	2.2	6

Ferroelectric Phases in Rare-Earth TTB Ferroelectric Compounds Pb_{2(1 - x)}K<sub>(1 +) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50.64

#	Article	IF	Citations
55	Ionic Conduction Properties in PbK2LiNb5O15. Ferroelectrics, 2008, 371, 17-20.	0.6	5
56	Monte Carlo Study of Ferroelectric Properties of Tetragonal Tungsten Bronze Compounds. Ferroelectrics, 2010, 397, 1-8.	0.6	5
57	Resistive Switching Hysteresis in Thin Films of Bismuth Ferrite. Ferroelectrics, 2013, 444, 183-189.	0.6	5
58	Resistive switching in a (00â,,")-oriented GdK2Nb5O15 thin film with tetragonal tungsten bronze type structure. Superlattices and Microstructures, 2014, 72, 35-42.	3.1	5
59	Impedance spectroscopy studies on lead free Ba 1-x Mg x (Ti 0.9 Zr 0.1)O 3 ceramics. Superlattices and Microstructures, 2018, 118, 45-54.	3.1	5
60	Synthesis of La0.5Ca0.5â^'xâ-¡xMnO3 nanocrystalline manganites by sucrose assisted auto combustion route and study of their structural, magnetic and magnetocaloric properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 20459-20470.	2.2	5
61	Dielectric and structural properties of diffuse ferroelectric phase transition in Pb _{1.85} K _{1.15} Li _{0.15} Nb ₅ O ₁₅ ceramic. EPJ Applied Physics, 2011, 53, 20901.	0.7	4
62	Investigation of Polyol Process for the Synthesis of Highly Pure BiFeO3 Ovoid-Like Shape Nanostructured Powders. Nanomaterials, 2020, 10, 26.	4.1	4
63	Structural, dielectric and magnetic studies of (0–3) type multiferroic (1Ââ^Âx) BaTi0.8Sn0.2O3–(x) La0.5Ca0.5MnO3 (0â€‰â‰æ€‰xâ€‰â‰æ€‰1) composite ceramics. Journal of Materials Science: Materials 2020, 31, 19343-19354.	in £l ectro	nic≰,
64	H.R.E.M. Study of the Room Temperature Phase of PbK 2 LiNb 5 O 15. Ferroelectrics, 2003, 290, 83-90.	0.6	3
65	Anomalies of Thermal Dilatation and Domain Structure in the Multiferroic Material PbK ₂ LiNb ₅ O ₁₅ . Ferroelectrics, 2008, 376, 17-24.	0.6	3
66	Structural, Dielectric, and Magnetic Properties of Multiferroic (\$1 - x\$) La0.5Ca0.5MnO3-(\$x\$) BaTi0.8Sn0.2O3 Laminated Composites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1935-1941.	3.0	3
67	Switching Properties of Ferroelectric Perovskite Superlattices. Ferroelectrics, 2019, 544, 43-48.	0.6	3
68	Enhanced electrocaloric and energy-storage properties of environment-friendly ferroelectric Ba0.9Sr0.1Ti1â^xSnxO3 ceramics. Materials Today Communications, 2022, 31, 103351.	1.9	3
69	Synthesis of In ₂ S _{3(1-<i>x</i>)} O _{3<i>x</i>} thin films by oxidation of In ₂ S ₃ film and influence of film microstructure. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2865-2870.	1.8	2
70	Dielectric behaviour and dechiralization lines dynamics of a pure Smectic-C* in confined geometry: onset of mesoscopic ferrielectricity. Liquid Crystals, 2016, 43, 639-647.	2.2	2
71	Structural and electrical properties of K3Li2Nb5O15 thin film grown by pulsed laser deposition. Materials Research Bulletin, 2017, 94, 287-290.	5.2	2
72	Structural and optical properties of Pb2KNb5O15 and GdK2Nb5O15 tungsten bronze thin films grown by pulsed laser deposition. Journal of Alloys and Compounds, 2017, 724, 1070-1074.	5.5	2

#	Article	IF	CITATIONS
73	Structural, dielectric, ferroelectric and electrical properties of lead-free Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic prepared by sol–gel method. Materials Today: Proceedings, 2022, 51, 2059-2065.	1.8	2
74	Impact of annealing on electrocaloric response in Lanthanum-modified lead zirconate titanate ceramic. Journal of Alloys and Compounds, 2022, 907, 164517.	5 . 5	2
7 5	Nanostructured BaTi1-xSnxO3 ferroelectric materials for electrocaloric applications and energy performance. Current Applied Physics, 2022, 38, 59-66.	2.4	2
76	Thermally stimulated processes in samarium-modified lead titanate ferroelectric ceramics. Applied Physics A: Materials Science and Processing, 2013, 112, 419-423.	2.3	1
77	Oxygen-deficient GdK 2 Nb 5 O 15 ferroelectric epitaxial thin film. Europhysics Letters, 2016, 116, 67001.	2.0	1
78	Study of Aand Bsites order in lanthanide-doped lead titanate ferroelectric system. Powder Diffraction, 2016, 31, 23-30.	0.2	1
79	Investigation of diffuse phase transition in ferroelectric Pb2â^'x K1+x Li x Nb5O15 (0Ââ‰ÂxÂâ‰Â1.5) ceramics. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	1
80	Ferrielectricity in smectic-C*dechiralization-line lattices. Physical Review E, 2016, 93, 042704.	2.1	1
81	Properties of layered structures based on barium titanate. Ferroelectrics, 2020, 561, 135-141.	0.6	1
82	Structural characterization of PZT thin films and related properties. Ferroelectrics, 2001, 254, 403-410.	0.6	0
83	Structural and Electrical Properties of the Ferroelectric PbK 2 LiNb 5 O 15. Ferroelectrics, 2002, 268, 417-422.	0.6	0
84	Characterization and Phase Diagram of the Tetragonal Tungsten Bronze Type Ferroelectric Compounds Pb2(1â°x)GdxK1+xNb5O15 for Energy Storage Applications., 2020,, 401-412.		0