R R Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5728297/publications.pdf

Version: 2024-02-01

26610 14,870 140 56 h-index citations papers

g-index 179 179 179 6861 docs citations times ranked citing authors all docs

20343

116

#	Article	IF	CITATIONS
1	On the depletion of Antarctic ozone. Nature, 1986, 321, 755-758.	13.7	1,382
2	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935
3	The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. Journal of Geophysical Research, 1985, 90, 3850-3868.	3.3	724
4	Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 2007, 112, .	3.3	632
5	Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 2006, 111, .	3.3	414
6	Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	395
7	Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model. Journals of the Atmospheric Sciences, 2010, 67, 136-156.	0.6	374
8	A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere. Journal of Geophysical Research, 1983, 88, 1379-1400.	3.3	360
9	Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	308
10	The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet. Science, 2008, 320, 1486-1489.	6.0	307
11	Acceleration of the Brewer–Dobson Circulation due to Increases in Greenhouse Gases. Journals of the Atmospheric Sciences, 2008, 65, 2731-2739.	0.6	302
12	Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. Journal of Climate, 2010, 23, 5349-5374.	1.2	280
13	Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research, 2010, 115, .	3.3	280
14	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	1.3	277
15	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
16	Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. Journal of Geophysical Research, 2004, 109, .	3.3	242
17	Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 2007, 112 , .	3.3	230
18	Climatology of the semiannual oscillation of the tropical middle atmosphere. Journal of Geophysical Research, 1997, 102, 26019-26032.	3.3	229

#	Article	IF	CITATIONS
19	"Downward Control―of the Mean Meridional Circulation and Temperature Distribution of the Polar Winter Stratosphere. Journals of the Atmospheric Sciences, 1994, 51, 2238-2245.	0.6	206
20	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
21	Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results. Journals of the Atmospheric Sciences, 2017, 74, 275-291.	0.6	180
22	Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. Journal of Geophysical Research, 2006, 111, .	3.3	179
23	ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophysical Research Letters, 2009, 36, .	1.5	172
24	Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics, 2008, 8, 765-785.	1.9	156
25	Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events. Journals of the Atmospheric Sciences, 2010, 67, 2331-2340.	0.6	152
26	Thermosphere extension of the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2010, 115, .	3.3	144
27	Impact of geoengineered aerosols on the troposphere and stratosphere. Journal of Geophysical Research, 2009, 114, .	3.3	141
28	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .	3.3	139
29	Time-Dependent Upwelling in the Tropical Lower Stratosphere Estimated from the Zonal-Mean Momentum Budget. Journals of the Atmospheric Sciences, 2002, 59, 2141-2152.	0.6	134
30	Simulation of polar ozone depletion: An update. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7958-7974.	1.2	132
31	On temperature inversions and the mesospheric surf zone. Journal of Geophysical Research, 2002, 107, ACL 8-1.	3.3	130
32	Large-Scale Waves in the Mesosphere and Lower Thermosphere Observed by SABER. Journals of the Atmospheric Sciences, 2005, 62, 4384-4399.	0.6	128
33	WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. Journal of Geophysical Research, 2011, 116, .	3.3	123
34	Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890.	1.3	122
35	Role of aerosol variations in anthropogenic ozone depletion in the polar regions. Journal of Geophysical Research, 1996, 101, 22991-23006.	3.3	121
36	Tracer Transport by the Diabatic Circulation Deduced from Satellite Observations. Journals of the Atmospheric Sciences, 1986, 43, 1603-1617.	0.6	118

#	Article	IF	CITATIONS
37	Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). Journal of Geophysical Research, 2005, 110, .	3.3	117
38	Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5307-5312.	3.3	114
39	Photochemistry and Transport of Carbon Monoxide in the Middle Atmosphere. Journals of the Atmospheric Sciences, 1985, 42, 1072-1083.	0.6	111
40	Stratosphereâ€troposphere coupling and annular mode variability in chemistryâ€climate models. Journal of Geophysical Research, 2010, 115, .	3.3	107
41	Longâ€ŧerm middle atmospheric influence of very large solar proton events. Journal of Geophysical Research, 2009, 114, .	3.3	103
42	Dynamical Balances and Tropical Stratospheric Upwelling. Journals of the Atmospheric Sciences, 2008, 65, 3584-3595.	0.6	102
43	Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. Journal of Geophysical Research, 2010, 115 , .	3.3	93
44	On the distribution of CO ₂ and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5700-5718.	1.2	90
45	Parameterization of Planetary Wave Breaking in the Middle Atmosphere. Journals of the Atmospheric Sciences, 1991, 48, 1405-1419.	0.6	88
46	On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4518-4537.	1.2	87
47	A Mechanistic Model of Ozone Transport by Planetary Waves in the Stratosphere. Journals of the Atmospheric Sciences, 1979, 36, 350-364.	0.6	84
48	On the Determination of Age of Air Trends from Atmospheric Trace Species. Journals of the Atmospheric Sciences, 2011, 68, 139-154.	0.6	83
49	Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012. Geophysical Research Letters, 2013, 40, 1861-1867.	1.5	83
50	Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geoscientific Model Development, 2018, 11, 1009-1032.	1.3	81
51	Decline and recovery of total column ozone using a multimodel time series analysis. Journal of Geophysical Research, 2010, 115, .	3.3	74
52	Improved predictability of the troposphere using stratospheric final warmings. Journal of Geophysical Research, $2011,116,$	3.3	70
53	On transient climate change at the Cretaceousâ^Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7415-E7424.	3.3	69
54	The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends. Journal of Climate, 2009, 22, 429-445.	1.2	68

#	Article	IF	CITATIONS
55	Analysis of the ENSO Signal in Tropospheric and Stratospheric Temperatures Observed by MSU, 1979–2000. Journal of Climate, 2004, 17, 3934-3946.	1.2	62
56	Sensitivity of Sudden Stratospheric Warmings to Previous Stratospheric Conditions. Journals of the Atmospheric Sciences, 2017, 74, 2857-2877.	0.6	62
57	Attribution of decadal variability in lowerâ€stratospheric tropical ozone. Geophysical Research Letters, 2007, 34, .	1.5	61
58	The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using highâ€altitude data assimilation products in WACCMâ€X. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8954-8968.	1.2	61
59	Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). Journal of Geophysical Research, 2008, 113 , .	3.3	60
60	Effects of Different Stratospheric SO ₂ Injection Altitudes on Stratospheric Chemistry and Dynamics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4654-4673.	1.2	58
61	A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1234-1246.	1.2	56
62	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
63	A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region. Journal of Geophysical Research, 2007, 112, .	3.3	55
64	An Evaluation of the Largeâ€Scale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032835.	1.2	55
65	Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 10945-10955.	1.9	53
66	A detailed evaluation of the stratospheric heat budget: 2. Global radiation balance and diabatic circulations. Journal of Geophysical Research, 1999, 104, 6039-6066.	3.3	52
67	On the Momentum Budget of the Quasi-Biennial Oscillation in the Whole Atmosphere Community Climate Model. Journals of the Atmospheric Sciences, 2019, 76, 69-87.	0.6	52
68	Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	50
69	Variations of global gravity waves derived from 14Âyears of SABER temperature observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6231-6249.	1.2	50
70	Significant Weakening of Brewerâ€Dobson Circulation Trends Over the 21st Century as a Consequence of the Montreal Protocol. Geophysical Research Letters, 2018, 45, 401-409.	1.5	50
71	Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. Atmospheric Chemistry and Physics, 2017, 17, 883-898.	1.9	49
72	Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4991-5002.	1.2	47

#	Article	IF	Citations
73	Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM). Advances in Space Research, 2008, 41, 1398-1407.	1.2	46
74	Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations. Journal of Geophysical Research, 2008, 113, .	3.3	46
75	A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	42
76	A review of CO2 and CO abundances in the middle atmosphere. Geophysical Monograph Series, 2000, , 83-100.	0.1	41
77	Error Growth in a Whole Atmosphere Climate Model. Journals of the Atmospheric Sciences, 2009, 66, 173-186.	0.6	41
78	Increasing carbon dioxide concentration in the upper atmosphere observed by SABER. Geophysical Research Letters, 2015, 42, 7194-7199.	1.5	41
79	Evaluation of the Quasiâ€Biennial Oscillation in global climate models for the SPARC QBOâ€initiative. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1459-1489.	1.0	41
80	Attribution of observed changes in stratospheric ozone and temperature. Atmospheric Chemistry and Physics, 2011, 11, 599-609.	1.9	40
81	Nighttime secondary ozone layer during major stratospheric sudden warmings in specifiedâ€dynamics WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8346-8358.	1.2	40
82	The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals. Journals of the Atmospheric Sciences, 2017, 74, 2413-2425.	0.6	40
83	Causes and Climatic Consequences of the Impact Winter at the Cretaceousâ€Paleogene Boundary. Geophysical Research Letters, 2020, 47, e60121.	1.5	40
84	Wave Forcing of the Tropical Upwelling in the Lower Stratosphere under Increasing Concentrations of Greenhouse Gases. Journals of the Atmospheric Sciences, 2009, 66, 3184-3196.	0.6	38
85	The Montreal Protocol protects the terrestrial carbon sink. Nature, 2021, 596, 384-388.	13.7	38
86	100 Years of Progress in Understanding the Stratosphere and Mesosphere. Meteorological Monographs, 2019, 59, 27.1-27.62.	5.0	37
87	Response of the Quasiâ€Biennial Oscillation to a warming climate in global climate models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1490-1518.	1.0	36
88	Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8940-8950.	1.2	35
89	Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2007, 112, .	3.3	33
90	Longest continuous ground-based measurements of mesospheric CO. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	32

#	Article	IF	CITATIONS
91	Anthropogenic forcing of the Northern Annular Mode in CCMValâ€2 models. Journal of Geophysical Research, 2010, 115, .	3.3	32
92	Using the Artificial Tracer e90 to Examine Present and Future UTLS Tracer Transport in WACCM. Journals of the Atmospheric Sciences, 2017, 74, 3383-3403.	0.6	32
93	Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmospheric Chemistry and Physics, 2018, 18, 6699-6720.	1.9	32
94	The Role of Planetary Waves in the Maintenance of the Zonally Averaged Ozone Distribution of the Upper Stratosphere. Journals of the Atmospheric Sciences, 1980, 37, 2248-2264.	0.6	31
95	Validation of the global distribution of CO ₂ volume mixing ratio in the mesosphere and lower thermosphere from SABER. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,067.	1.2	31
96	The importance of timeâ€varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4435-4447.	1.2	30
97	Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophysical Research Letters, 2009, 36, .	1.5	29
98	Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophysical Research Letters, 2010, 37, .	1.5	29
99	The influence of mixing on the stratospheric age of air changes in the 21st century. Atmospheric Chemistry and Physics, 2019, 19, 921-940.	1.9	29
100	An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1541-1567.	1.0	29
101	"World avoided―simulations with the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2012, 117, .	3.3	28
102	The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models. Atmospheric Chemistry and Physics, 2019, 19, 11559-11586.	1.9	27
103	Response of Arctic ozone to sudden stratospheric warmings. Atmospheric Chemistry and Physics, 2018, 18, 16499-16513.	1.9	26
104	The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmospheric Chemistry and Physics, 2010, 10, 9473-9486.	1.9	25
105	Future trends in stratosphere-to-troposphere transport in CCMI models. Atmospheric Chemistry and Physics, 2020, 20, 6883-6901.	1.9	25
106	Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations. Atmospheric Chemistry and Physics, 2021, 21, 1267-1285.	1.9	25
107	The Brewer–Dobson circulation in CMIP6. Atmospheric Chemistry and Physics, 2021, 21, 13571-13591.	1.9	25
108	Designing global climate and atmospheric chemistry simulations for 1 and 10â€km diameter asteroid impacts using the properties of ejecta from the K-Pg impact. Atmospheric Chemistry and Physics, 2016, 16, 13185-13212.	1.9	24

#	Article	IF	CITATIONS
109	Middle Atmosphere Temperature Trends in the Twentieth and Twentyâ€First Centuries Simulated With the Whole Atmosphere Community Climate Model (WACCM). Journal of Geophysical Research: Space Physics, 2019, 124, 7984-7993.	0.8	24
110	Increasing Water Vapor in the Stratosphere and Mesosphere After 2002. Geophysical Research Letters, 2019, 46, 13452-13460.	1.5	24
111	Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere. Geophysical Research Letters, 2016, 43, 12,624.	1.5	23
112	Teleconnections of the Quasiâ€Biennial Oscillation in a multiâ€model ensemble of QBOâ€resolving models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1568-1592.	1.0	23
113	Solar surprise?. Nature, 2010, 467, 668-669.	13.7	22
114	Future Changes in the Brewer–Dobson Circulation under Different Greenhouse Gas Concentrations in WACCM4. Journals of the Atmospheric Sciences, 2014, 71, 2962-2975.	0.6	22
115	The ENSO Signal in the Stratosphere. Annals of the New York Academy of Sciences, 2008, 1146, 16-31.	1.8	20
116	On the secular trend of CO x and CO 2 in the lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3634-3644.	1.2	20
117	On Longâ€Term SABER CO ₂ Trends and Effects Due to Nonuniform Space and Time Sampling. Journal of Geophysical Research: Space Physics, 2018, 123, 7958-7967.	0.8	20
118	Role of equatorial waves and convective gravity waves in the 2015/16Âquasi-biennial oscillation disruption. Atmospheric Chemistry and Physics, 2020, 20, 14669-14693.	1.9	19
119	CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model. Atmospheric Chemistry and Physics, 2012, 12, 3261-3271.	1.9	18
120	Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 2018, 18, 1457-1474.	1.9	18
121	Influences of the Indian Summer Monsoon on Water Vapor and Ozone Concentrations in the UTLS as Simulated by Chemistry–Climate Models. Journal of Climate, 2010, 23, 3525-3544.	1.2	17
122	Reconciling modeled and observed temperature trends over Antarctica. Geophysical Research Letters, 2012, 39, .	1.5	17
123	The Role of the Middle Atmosphere in Simulations of the Troposphere during Northern Hemisphere Winter: Differences between High- and Low-Top Models. Journals of the Atmospheric Sciences, 2010, 67, 3048-3064.	0.6	15
124	Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing. Geophysical Research Letters, 2017, 44, 3402-3410.	1.5	15
125	The Importance of the Montreal Protocol in Mitigating the Potential Intensity of Tropical Cyclones. Journal of Climate, 2016, 29, 2275-2289.	1.2	14
126	Validation of the MIPAS CO ₂ volume mixing ratio in the mesosphere and lower thermosphere and comparison with WACCM simulations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8345-8366.	1.2	14

#	Article	IF	CITATIONS
127	The 11 year solar cycle signature on waveâ€driven dynamics in WACCM. Journal of Geophysical Research: Space Physics, 2016, 121, 3484-3496.	0.8	13
128	The equatorial stratospheric semiannual oscillation and timeâ€mean winds in QBOi models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1593-1609.	1.0	12
129	Forcing mechanism of the seasonally asymmetric quasiâ€biennial oscillation secondary circulation in ERAâ€40 and MAECHAM5. Journal of Geophysical Research, 2008, 113, .	3.3	11
130	Longâ€Term Variability and Tendencies in Middle Atmosphere Temperature and Zonal Wind From WACCM6 Simulations During 1850–2014. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033579.	1.2	10
131	Variability of water vapor in the tropical middle atmosphere observed from satellites and interpreted using SDâ€WACCM simulations. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	7
132	Observations of intermediate-scale diurnal waves in the equatorial mesosphere and lower thermosphere. Journal of Geophysical Research, 2006, 111 , .	3.3	5
133	Longâ€Term Variability and Tendencies in Migrating Diurnal Tide From WACCM6 Simulations During 1850–2014. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033644.	1.2	5
134	Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multiâ€Decadal Variability. Geophysical Research Letters, 2021, 48, e2020GL092162.	1.5	5
135	Diagnosis of Middle-Atmosphere Climate Sensitivity by the Climate Feedback–Response Analysis Method. Journals of the Atmospheric Sciences, 2016, 73, 3-23.	0.6	4
136	Interâ€Hemispheric Coupling During Sudden Stratospheric Warming Events With Elevated Stratopause. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
137	Middle atmosphere cooling. Nature, 1992, 357, 18-18.	13.7	2
138	Atmospheric Chemistry Signatures of an Equatorially Symmetric Matsuno–Gill Circulation Pattern. Journals of the Atmospheric Sciences, 2021, 78, 107-116.	0.6	1
139	On the response of the middle atmosphere to anthropogenic forcing. Annals of the New York Academy of Sciences, 2021, 1504, 25-43.	1.8	1
140	Impact of Increased Vertical Resolution in WACCM on the Climatology of Major Sudden Stratospheric Warmings. Atmosphere, 2022, 13, 546.	1.0	1