Edouard Pesquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5726340/publications.pdf

Version: 2024-02-01

49 papers

2,984 citations

218677 26 h-index 223800 46 g-index

54 all docs

54 docs citations

times ranked

54

3862 citing authors

#	Article	IF	CITATIONS
1	Overexpression of EgrIAA20 from Eucalyptus grandis, a Non-Canonical Aux/IAA Gene, Specifically Decouples Lignification of the Different Cell-Types in Arabidopsis Secondary Xylem. International Journal of Molecular Sciences, 2022, 23, 5068.	4.1	2
2	Selection on Accessible Chromatin Regions in <i>Capsella grandiflora</i> . Molecular Biology and Evolution, 2021, 38, 5563-5575.	8.9	6
3	Phenoloxidases in Plantsâ€"How Structural Diversity Enables Functional Specificity. Frontiers in Plant Science, 2021, 12, 754601.	3.6	27
4	New insights into the physical processes that underpin cell division and the emergence of different cellular and multicellular structures. Progress in Biophysics and Molecular Biology, 2020, 150, 13-42.	2.9	4
5	Importance of Lignin Coniferaldehyde Residues for Plant Properties and Sustainable Uses. ChemSusChem, 2020, 13, 4400-4408.	6.8	14
6	Determining the Genetic Regulation and Coordination of Lignification in Stem Tissues of <i>Arabidopsis</i> Using Semiquantitative Raman Microspectroscopy. ACS Sustainable Chemistry and Engineering, 2020, 8, 4900-4909.	6.7	16
7	Cellular and Genetic Regulation of Coniferaldehyde Incorporation in Lignin of Herbaceous and Woody Plants by Quantitative Wiesner Staining. Frontiers in Plant Science, 2020, 11, 109.	3.6	25
8	Light affects tissue patterning of the hypocotyl in the shade-avoidance response. PLoS Genetics, 2020, 16, e1008678.	3.5	15
9	Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Current Opinion in Biotechnology, 2019, 56, 215-222.	6.6	49
10	Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases. Plant Physiology, 2018, 176, 1199-1214.	4.8	49
11	Analysis of Lignin Composition and Distribution Using Fluorescence Laser Confocal Microspectroscopy. Methods in Molecular Biology, 2017, 1544, 233-247.	0.9	18
12	Establishment and Utilization of Habituated Cell Suspension Cultures for Hormone-Inducible Xylogenesis. Methods in Molecular Biology, 2017, 1544, 37-57.	0.9	6
13	Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development. Plant Cell, 2017, 29, 2433-2449.	6.6	59
14	AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in <i>Populus tremula</i>). Plant Cell, 2017, 29, 1585-1604.	6.6	219
15	The <i>Eucalyptus</i> linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. New Phytologist, 2017, 213, 287-299.	7.3	46
16	The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood. Frontiers in Plant Science, 2016, 7, 1422.	3.6	20
17	METACASPASE9 modulates autophagy to confine cell death to the target cells during <i>Arabidopsis</i> vascular xylem differentiation. Biology Open, 2016, 5, 122-129.	1.2	56
18	The COST action FP1105 – a research network to understand wood cell wall structure, biopolymer interaction and composition. Holzforschung, 2016, 70, 1103-1104.	1.9	0

#	Article	IF	Citations
19	Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including <i>p</i> li>-lodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE. Plant Physiology, 2016, 172, 198-220.	4.8	26
20	Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis. Frontiers in Plant Science, 2015, 6, 525.	3.6	36
21	Cellular interactions during tracheary elements formation and function. Current Opinion in Plant Biology, 2015, 23, 109-115.	7.1	23
22	The cell biology of lignification in higher plants. Annals of Botany, 2015, 115, 1053-1074.	2.9	505
23	Life Beyond Death: The Formation of Xylem Sap Conduits. , 2015, , 55-76.		6
24	Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00314.	6.6	55
25	Cooperative lignification of xylem tracheary elements. Plant Signaling and Behavior, 2015, 10, e1003753.	2.4	20
26	Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana. PLoS ONE, 2014, 9, e100312.	2.5	45
27	Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. Journal of Experimental Botany, 2014, 65, 2757-2766.	4.8	59
28	Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in <i>Zinnia elegans</i> ÂÂ. Plant Cell, 2013, 25, 1314-1328.	6.6	158
29	Plant proteases – from detection to function. Physiologia Plantarum, 2012, 145, 1-4.	5.2	17
30	Ethylene stimulates tracheary element differentiation in <i>Zinnia elegans</i> cell cultures. New Phytologist, 2011, 190, 138-149.	7.3	69
31	Mechanisms for shaping, orienting, positioning and patterning plant secondary cell walls. Plant Signaling and Behavior, 2011, 6, 843-849.	2.4	15
32	Microtubules, MAPs and Xylem Formation. Advances in Plant Biology, 2011, , 277-306.	0.8	8
33	Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis. Plant Physiology, 2010, 154, 1710-1720.	4.8	55
34	The Microtubule-Associated Protein AtMAP70-5 Regulates Secondary Wall Patterning in Arabidopsis Wood Cells. Current Biology, 2010, 20, 744-749.	3.9	195
35	Microtubule Dynamics in Plant Cells. Methods in Cell Biology, 2010, 97, 373-400.	1.1	27
36	A unique program for cell death in xylem fibers of <i>Populus</i> stem. Plant Journal, 2009, 58, 260-274.	5.7	147

#	Article	IF	CITATIONS
37	Identifying New Components Participating in the Secondary Cell Wall Formation of Vessel Elements in Zinnia and Arabidopsis Â. Plant Cell, 2009, 21, 1155-1165.	6.6	53
38	Transient transformation and RNA silencing in <i>Zinnia</i> tracheary element differentiating cell cultures. Plant Journal, 2008, 53, 864-875.	5.7	16
39	ACAULIS5 controls <i>Arabidopsis</i> vylem specification through the prevention of premature cell death. Development (Cambridge), 2008, 135, 2573-2582.	2.5	140
40	In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast. Plant Cell, 2007, 19, 1964-1979.	6.6	115
41	The different fates of mitochondria and chloroplasts during darkâ€induced senescence in <i>Arabidopsis</i> leaves. Plant, Cell and Environment, 2007, 30, 1523-1534.	5.7	114
42	Unravelling ethylene biosynthesis and its role during tracheary element formation in Zinnia elegans., 2007,, 147-149.		5
43	Galactoglucomannans Increase Cell Population Density and Alter the Protoxylem/Metaxylem Tracheary Element Ratio in Xylogenic Cultures of Zinnia. Plant Physiology, 2006, 142, 696-709.	4.8	47
44	Molecular changes associated with the setting up of secondary growth in aspen. Journal of Experimental Botany, 2005, 56, 2211-2227.	4.8	43
45	Novel Markers of Xylogenesis in Zinnia Are Differentially Regulated by Auxin and Cytokinin. Plant Physiology, 2005, 139, 1821-1839.	4.8	89
46	Multiple gene detection byin situRT-PCR in isolated plant cells and tissues. Plant Journal, 2004, 39, 947-959.	5.7	31
47	Zinnia elegans: the missing link from in vitro tracheary elements to xylem. Physiologia Plantarum, 2003, 119, 463-468.	5.2	20
48	New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Letters, 2003, 550, 149-154.	2.8	205
49	Xylem Formation and Lignification in Trees and Model Species. Progress in Biotechnology, 2001, , 11-18.	0.2	2