
## **Rikard Gebart**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725954/publications.pdf Version: 2024-02-01



RIKADO CERADT

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rapid change of particle velocity due to volatile gas release during biomass devolatilization.<br>Combustion and Flame, 2022, 238, 111898.                                      | 5.2 | 9         |
| 2  | Effect of acoustic perturbation on particle dispersion in a swirl-stabilized pulverized fuel burner:<br>Cold-flow conditions. Fuel Processing Technology, 2022, 228, 107142.    | 7.2 | 2         |
| 3  | Numerical simulation of a biomass cyclone gasifier: Effects of operating conditions on gasifier performance. Fuel Processing Technology, 2021, 218, 106861.                     | 7.2 | 6         |
| 4  | Computational fluid dynamic simulations of thermochemical conversion of pulverized biomass in a dilute flow using spheroidal approximation. Fuel, 2020, 271, 117495.            | 6.4 | 9         |
| 5  | Morphology and volume fraction of biomass particles in a jet flow during devolatilization. Fuel, 2020, 278, 118241.                                                             | 6.4 | 4         |
| 6  | A study of black liquor and pyrolysis oil co-gasification in pilot scale. Biomass Conversion and<br>Biorefinery, 2018, 8, 113-124.                                              | 4.6 | 13        |
| 7  | Soot reduction in an entrained flow gasifier of biomass by active dispersion of fuel particles. Fuel, 2017, 201, 111-117.                                                       | 6.4 | 20        |
| 8  | Active fuel particles dispersion by synthetic jet in an entrained flow gasifier of biomass: Cold flow.<br>Powder Technology, 2016, 302, 275-282.                                | 4.2 | 11        |
| 9  | Cold flow experiments in an entrained flow gasification reactor with a swirl-stabilized pulverized biofuel burner. International Journal of Multiphase Flow, 2016, 85, 267-277. | 3.4 | 14        |
| 10 | Performance of a Pilot-Scale Entrained-Flow Black Liquor Gasifier. Energy & Fuels, 2016, 30, 3175-3185.                                                                         | 5.1 | 44        |
| 11 | Does distance among biomass particles affect soot formation in an entrained flow gasification process?. Fuel Processing Technology, 2016, 141, 99-105.                          | 7.2 | 24        |
| 12 | Influence of process parameters on the performance of an oxygen blown entrained flow biomass gasifier. Fuel, 2015, 153, 510-519.                                                | 6.4 | 54        |
| 13 | Numerical modeling of a 500ÂkW air-blown cyclone gasifier. Applied Thermal Engineering, 2015, 90,<br>694-702.                                                                   | 6.0 | 9         |
| 14 | Two years experience of the BioDME project—A complete wood to wheel concept. Environmental<br>Progress and Sustainable Energy, 2014, 33, 744-750.                               | 2.3 | 55        |
| 15 | Online Characterization of Syngas Particulates Using Aerosol Mass Spectrometry in Entrained-Flow<br>Biomass Gasification. Aerosol Science and Technology, 2014, 48, 1145-1155.  | 3.1 | 17        |
| 16 | Influence from fuel type on the performance of an air-blown cyclone gasifier. Fuel, 2014, 116, 751-759.                                                                         | 6.4 | 19        |
| 17 | High-speed imaging of biomass particles heated with a laser. Journal of Analytical and Applied<br>Pyrolysis, 2013, 103, 278-286.                                                | 5.5 | 8         |
| 18 | Numerical modeling of counter-current condensation in a Black Liquor Gasification plant. Applied<br>Thermal Engineering, 2013, 58, 327-335.                                     | 6.0 | 6         |

**Rikard Gebart** 

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pressurized Oxygen Blown Entrained-Flow Gasification of Wood Powder. Energy & Fuels, 2013, 27, 932-941.                                                                                                 | 5.1 | 78        |
| 20 | Analysis of trace components in synthesis gas generated by black liquor gasification. Fuel, 2012, 102, 173-179.                                                                                         | 6.4 | 24        |
| 21 | High-speed interferometric measurement and visualization of the conversion of a black liquor<br>droplet during laser heating. Optics and Lasers in Engineering, 2012, 50, 1654-1661.                    | 3.8 | 6         |
| 22 | Experimental investigation of an industrial scale black liquor gasifier. Part 2: Influence of quench operation on product gas composition. Fuel, 2012, 93, 117-129.                                     | 6.4 | 32        |
| 23 | Catalytic methanol synthesis via black liquor gasification. Fuel Processing Technology, 2012, 94, 10-15.                                                                                                | 7.2 | 20        |
| 24 | Computational Fluid Dynamics Simulations of Raw Gas Composition from a Black Liquor<br>Gasifier—Comparison with Experiments. Energy & Fuels, 2011, 25, 4122-4128.                                       | 5.1 | 4         |
| 25 | Design and methodology of a high temperature gas sampling system for pressurized black liquor gasification. Fuel, 2010, 89, 2583-2591.                                                                  | 6.4 | 25        |
| 26 | Experimental investigation of an industrial scale black liquor gasifier. 1. The effect of reactor operation parameters on product gas composition. Fuel, 2010, 89, 4025-4034.                           | 6.4 | 57        |
| 27 | Experiments and mathematical models of black liquor gasification – influence of minor gas<br>components on temperature, gas composition, and fixed carbon conversion. Tappi Journal, 2010, 9,<br>15-24. | 0.5 | 16        |
| 28 | Spatially resolved measurements of gas composition in a pressurised black liquor gasifier.<br>Environmental Progress and Sustainable Energy, 2009, 28, 316-323.                                         | 2.3 | 6         |
| 29 | Comparisons of Initial Experiments and Reactor Model Predictions in High Temperature Black Liquor<br>Gasification. Tappi Journal, 2009, 8, 12-18.                                                       | 0.5 | 4         |
| 30 | Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel, 2007, 86, 181-193.                                                      | 6.4 | 104       |
| 31 | CFD modelling of black liquor gasification: Identification of important model parameters. Fuel, 2007,<br>86, 1918-1926.                                                                                 | 6.4 | 33        |
| 32 | High-temperature aerosol formation in wood pellets flames: Spatially resolved measurements.<br>Combustion and Flame, 2006, 147, 278-293.                                                                | 5.2 | 58        |
| 33 | DETERMINATION OF THE INFLUENCE OF UNCERTAIN MODEL PARAMETERS IN PRESSURIZED GASIFICATION OF BLACK LIQUOR USING A FACTORIAL DESIGN. Combustion Science and Technology, 2005, 177, 435-453.               | 2.3 | 3         |
| 34 | THE INFLUENCE OF AIR DISTRIBUTION RATE ON PARTICLE EMISSIONS IN FIXED BED COMBUSTION OF BIOMASS. Combustion Science and Technology, 2005, 177, 1747-1766.                                               | 2.3 | 44        |
| 35 | THE INFLUENCE OF FUEL TYPE ON PARTICLE EMISSIONS IN COMBUSTION OF BIOMASS PELLETS. Combustion Science and Technology, 2005, 177, 741-763.                                                               | 2.3 | 31        |
| 36 | Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor. Biomass and Bioenergy, 2004, 27, 645-652.              | 5.7 | 37        |

**RIKARD GEBART** 

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Critical Parameters for Particle Emissions in Small-Scale Fixed-Bed Combustion of Wood Pellets.<br>Energy & Fuels, 2004, 18, 897-907.                         | 5.1 | 53        |
| 38 | Application of digital speckle photography to measure thickness variations in the vacuum infusion process. Polymer Composites, 2003, 24, 448-455.             | 4.6 | 23        |
| 39 | Squeeze Flow Rheology of Glass Mat Thermoplastic (GMT) in Large Tools and at High Closing<br>Velocities. International Polymer Processing, 2002, 17, 158-165. | 0.5 | 2         |
| 40 | Assessment of Response Surface-Based Optimization Techniques for Unsteady Flow Around Bluff<br>Bodies. , 2002, , .                                            |     | 3         |
| 41 | Flow-enhancing layers in the vacuum infusion process. Polymer Composites, 2002, 23, 895-901.                                                                  | 4.6 | 17        |
| 42 | Analysis of an image processing method for fiber orientation in polymer composites. Polymer Composites, 2001, 22, 327-336.                                    | 4.6 | 9         |
| 43 | Analysis of the vacuum infusion molding process. Polymer Composites, 2000, 21, 28-40.                                                                         | 4.6 | 113       |
| 44 | Estimation of numerical accuracy for the flow field in a draft tube. International Journal of<br>Numerical Methods for Heat and Fluid Flow, 1999, 9, 472-487. | 2.8 | 25        |
| 45 | In-plane permeability measurements on fiber reinforcements by the multi-cavity parallel flow technique. Polymer Composites, 1999, 20, 146-154.                | 4.6 | 51        |
| 46 | Measurement of in-plane permeability of anisotropic fiber reinforcements. Polymer Composites, 1996,<br>17, 43-51.                                             | 4.6 | 92        |
| 47 | Effect of Perturbation of Fibre Architecture on Permeability Inside Fibre Tows. Journal of Composite<br>Materials, 1995, 29, 424-443.                         | 2.4 | 70        |
| 48 | Influence from process parameters on void formation in resin transfer molding. Polymer Composites, 1994, 15, 25-33.                                           | 4.6 | 164       |
| 49 | Critical parameters for heat transfer and chemical reactions in thermosetting materials. Journal of Applied Polymer Science, 1994, 51, 153-168.               | 2.6 | 18        |
| 50 | Optimization of cure kinetics model parameters from DSC-data. Thermochimica Acta, 1993, 214, 145-148.                                                         | 2.7 | 5         |
| 51 | Permeability of Unidirectional Reinforcements for RTM. Journal of Composite Materials, 1992, 26, 1100-1133.                                                   | 2.4 | 736       |