
Bruce A Bunnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose-Derived Stem Cells for Regenerative Medicine. Circulation Research, 2007, 100, 1249-1260.	4.5	2,054
2	Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a jointÂstatement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular TherapyÂ(ISCT). Cytotherapy, 2013, 15, 641-648.	0.7	1,469
3	Adipose-derived stem cells: Isolation, expansion and differentiationâ [~] †. Methods, 2008, 45, 115-120.	3.8	847
4	Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 2006, 99, 1285-1297.	2.6	614
5	Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2007, 358, 948-953.	2.1	444
6	Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. Journal of Cellular Physiology, 2006, 207, 331-339.	4.1	374
7	Stromal cells and stem cells in clinical bone regeneration. Nature Reviews Endocrinology, 2015, 11, 140-150.	9.6	342
8	Long-term <i>In vitro</i> Expansion Alters the Biology of Adult Mesenchymal Stem Cells. Cancer Research, 2008, 68, 4229-4238.	0.9	311
9	Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 186-191.	7.1	269
10	Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Research and Therapy, 2010, 1, 19.	5.5	224
11	Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials, 2006, 27, 1859-1867.	11.4	220
12	Concise Review: Adipose-Derived Stromal Vascular Fraction Cells and Stem Cells: Let's Not Get Lost in Translation. Stem Cells, 2011, 29, 749-754.	3.2	212
13	Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-α-induced protein 6. Stem Cell Research and Therapy, 2011, 2, 27.	5.5	198
14	Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1120-H1128.	3.2	176
15	A review of cellularization strategies for tissue engineering of whole organs. Frontiers in Bioengineering and Biotechnology, 2015, 3, 43.	4.1	172
16	Stromal stem cells from adipose tissue and bone marrow of ageâ€matched female donors display distinct immunophenotypic profiles. Journal of Cellular Physiology, 2011, 226, 843-851.	4.1	161
17	Neurogenesis of Rhesus adipose stromal cells. Journal of Cell Science, 2004, 117, 4289-4299.	2.0	159
18	Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Research, 2015, 17, 112.	5.0	152

#	Article	IF	CITATIONS
19	A Nonhuman Primate Model of Lung Regeneration: Detergent-Mediated Decellularization and Initial <i>In Vitro</i> Recellularization with Mesenchymal Stem Cells. Tissue Engineering - Part A, 2012, 18, 2437-2452.	3.1	149
20	Human adipose-derived cells: an update on the transition to clinical translation. Regenerative Medicine, 2012, 7, 225-235.	1.7	147
21	Ageâ€related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell, 2011, 10, 66-79.	6.7	142
22	Human Mesenchymal Stem Cells Tissue Development in 3D PET Matrices. Biotechnology Progress, 2004, 20, 905-912.	2.6	138
23	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	4.7	130
24	Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for <scp>MT</scp> 2 melatonin receptors, <scp>MEK</scp> 1/2, and <scp>MEK</scp> 5 in melatoninâ€mediated osteoblastogenesis. Journal of Pineal Research, 2018, 64, e12465.	7.4	122
25	Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. Stem Cells, 2018, 36, 1311-1328.	3.2	115
26	New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Research and Therapy, 2010, 1, 34.	5.5	113
27	In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 228-238.	1.6	110
28	Can stem cells be used to generate new lungs? <i>Ex vivo</i> lung bioengineering with decellularized whole lung scaffolds. Respirology, 2013, 18, 895-911.	2.3	103
29	Gene Therapy for Infectious Diseases. Clinical Microbiology Reviews, 1998, 11, 42-56.	13.6	102
30	Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. Journal of Molecular Endocrinology, 2014, 53, 345-353.	2.5	101
31	Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Research, 2013, 15, R102.	5.0	99
32	Differentiation of Adipose Stem Cells. Methods in Molecular Biology, 2008, 456, 155-171.	0.9	94
33	Current status of gene therapy strategies to treat HIV/AIDS. Molecular Therapy, 2005, 11, 823-842.	8.2	92
34	Characterization of Multipotent Mesenchymal Stem Cells from the Bone Marrow of Rhesus Macaques. Stem Cells and Development, 2005, 14, 440-451.	2.1	91
35	Adipose-derived stromal/stem cells. Organogenesis, 2013, 9, 3-10.	1.2	90
36	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	4.4	83

#	Article	IF	CITATIONS
37	Concise Review: The Obesity Cancer Paradigm: Exploration of the Interactions and Crosstalk with Adipose Stem Cells. Stem Cells, 2015, 33, 318-326.	3.2	76
38	Adipose-Derived Stem Cells on Hyaluronic Acid–Derived Scaffold. JAMA Ophthalmology, 2012, 130, 202.	2.4	75
39	MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Research and Therapy, 2011, 2, 49.	5.5	72
40	Age of the Donor Reduces the Ability of Human Adipose-Derived Stem Cells to Alleviate Symptoms in the Experimental Autoimmune Encephalomyelitis Mouse Model. Stem Cells Translational Medicine, 2013, 2, 797-807.	3.3	72
41	Osteochondral Tissue Chip Derived From iPSCs: Modeling OA Pathologies and Testing Drugs. Frontiers in Bioengineering and Biotechnology, 2019, 7, 411.	4.1	71
42	Rhesus Monkey Model for Fetal Gene Transfer: Studies with Retroviral- Based Vector Systems. Molecular Therapy, 2001, 3, 128-138.	8.2	69
43	Preferential Survival of CD4+ T Lymphocytes Engineered with Anti-Human Immunodeficiency Virus (HIV) Genes in HIV-Infected Individuals. Human Gene Therapy, 2005, 16, 1065-1074.	2.7	69
44	Expression of Telomerase Extends the Lifespan and Enhances Osteogenic Differentiation of Adipose Tissue-Derived Stromal Cells. Stem Cells, 2004, 22, 1356-1372.	3.2	68
45	Human Adipose Stromal/Stem Cells from Obese Donors Show Reduced Efficacy in Halting Disease Progression in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Stem Cells, 2016, 34, 614-626.	3.2	68
46	Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis. Stem Cells Translational Medicine, 2013, 2, 789-796.	3.3	66
47	CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nature Communications, 2020, 11, 6065.	12.8	66
48	Mesenchymal Lineage Stem Cells Have Pronounced Anti-Inflammatory Effects in the Twitcher Mouse Model of Krabbe's Disease. Stem Cells, 2011, 29, 67-77.	3.2	64
49	Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology, 2020, 35, 125-133.	3.1	64
50	Lentiviral Vector Gene Transfer into Fetal Rhesus Monkeys (Macaca mulatta): Lung-Targeting Approaches. Molecular Therapy, 2001, 4, 614-621.	8.2	62
51	Adipose Stromal Cells Repair Pressure Ulcers in Both Young and Elderly Mice: Potential Role of Adipogenesis in Skin Repair. Stem Cells Translational Medicine, 2015, 4, 632-642.	3.3	62
52	Development of Responsive Chitosan–Genipin Hydrogels for the Treatment of Wounds. ACS Applied Bio Materials, 2019, 2, 2879-2888.	4.6	62
53	Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes. Blood, 2005, 105, 3397-3404.	1.4	60
54	Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Research and Therapy, 2014, 5, 2.	5.5	60

#	Article	IF	CITATIONS
55	Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells. Environmental Health Perspectives, 2015, 123, 42-48.	6.0	59
56	Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone, 2008, 42, 861-870.	2.9	57
57	Adipose Tissue-Derived Mesenchymal Stem Cells. Cells, 2021, 10, 3433.	4.1	56
58	Targeted delivery of antisense oligonucleotides by molecular conjugates. Somatic Cell and Molecular Genetics, 1992, 18, 559-569.	0.7	54
59	Transient expression of a p58 protein kinase cDNA enhances mammalian glycosyltransferase activity. Biochemical and Biophysical Research Communications, 1990, 171, 196-203.	2.1	52
60	Evaluation of the host immune response to decellularized lung scaffolds derived from α-Gal knockout pigs in a non-human primate model. Biomaterials, 2018, 187, 93-104.	11.4	51
61	Reduction in SIV replication in rhesus macaques infused with autologous lymphocytes engineered with antiviral genes. Nature Medicine, 1998, 4, 181-186.	30.7	50
62	Pervasive supply of therapeutic lysosomal enzymes in the <scp>CNS</scp> of normal and Krabbeâ€affected nonâ€human primates by intracerebral lentiviral gene therapy. EMBO Molecular Medicine, 2016, 8, 489-510.	6.9	50
63	Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury. Stem Cell Research and Therapy, 2013, 4, 13.	5.5	49
64	The Effects of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A Review. Frontiers in Endocrinology, 2016, 7, 171.	3.5	49
65	Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells and Development, 2018, 27, 1605-1620.	2.1	48
66	Immunomodulatory Effects of Adipose Stromal Vascular Fraction Cells Promote Alternative Activation Macrophages to Repair Tissue Damage. Stem Cells, 2017, 35, 2198-2207.	3.2	47
67	Transplantation of Autologous Adipose Stem Cells Lacks Therapeutic Efficacy in the Experimental Autoimmune Encephalomyelitis Model. PLoS ONE, 2014, 9, e85007.	2.5	46
68	Innate Immune Activation in the Pathogenesis of a Murine Model of Globoid Cell Leukodystrophy. American Journal of Pathology, 2014, 184, 382-396.	3.8	46
69	Obesity Enhances the Conversion of Adipose-Derived Stromal/Stem Cells into Carcinoma-Associated Fibroblast Leading to Cancer Cell Proliferation and Progression to an Invasive Phenotype. Stem Cells International, 2017, 2017, 1-11.	2.5	46
70	Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Research, 2019, 21, 67.	5.0	45
71	Beyond the Present Constraints That Prevent a Wide Spread of Tissue Engineering and Regenerative Medicine Approaches. Frontiers in Bioengineering and Biotechnology, 2019, 7, 95.	4.1	45
72	Characterization of an Acellular Scaffold for a Tissue Engineering Approach to the Nipple-Areolar Complex Reconstruction. Cells Tissues Organs, 2017, 203, 183-193.	2.3	43

#	Article	IF	CITATIONS
73	Efficient In Vivo Marking of Primary CD4+ T Lymphocytes in Nonhuman Primates Using a Gibbon Ape Leukemia Virus-Derived Retroviral Vector. Blood, 1997, 89, 1987-1995.	1.4	42
74	Adipose Stromal Vascular Fraction-Mediated Improvements at Late-Stage Disease in a Murine Model of Multiple Sclerosis. Stem Cells, 2017, 35, 532-544.	3.2	42
75	Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model. Frontiers in Bioengineering and Biotechnology, 2019, 7, 211.	4.1	42
76	Clinical and Immunopathologic Alterations in Rhesus Macaques Affected with Globoid Cell Leukodystrophy. American Journal of Pathology, 2008, 172, 98-111.	3.8	41
77	Cell-Surface Expression of Neuron-Glial Antigen 2 (NG2) and Melanoma Cell Adhesion Molecule (CD146) in Heterogeneous Cultures of Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 2253-2266.	3.1	40
78	Interleukin 6 Mediates the Therapeutic Effects of Adipose-Derived Stromal/Stem Cells in Lipopolysaccharide-Induced Acute Lung Injury. Stem Cells, 2014, 32, 1616-1628.	3.2	40
79	Maresin-like Lipid Mediators Are Produced by Leukocytes and Platelets and Rescue Reparative Function of Diabetes-Impaired Macrophages. Chemistry and Biology, 2014, 21, 1318-1329.	6.0	39
80	Prospective influences of circadian clocks in adipose tissue and metabolism. Nature Reviews Endocrinology, 2011, 7, 98-107.	9.6	38
81	Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms. Stem Cell Research and Therapy, 2014, 5, 105.	5.5	38
82	Therapeutic Potential of Adipose Stem Cells. Advances in Experimental Medicine and Biology, 2018, 1341, 15-25.	1.6	38
83	Decellularized Adipose Tissue: Biochemical Composition, in vivo Analysis and Potential Clinical Applications. Advances in Experimental Medicine and Biology, 2019, 1212, 57-70.	1.6	38
84	Obesityâ€Associated Dysregulation of Calpastatin and MMPâ€15 in Adiposeâ€Derived Stromal Cells Results in their Enhanced Invasion. Stem Cells, 2012, 30, 2774-2783.	3.2	37
85	Laser direct-write based fabrication of a spatially-defined, biomimetic construct as a potential model for breast cancer cell invasion into adipose tissue. Biofabrication, 2017, 9, 025013.	7.1	37
86	Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. Journal of Biomedical Materials Research - Part A, 2018, 106, 2481-2493.	4.0	37
87	Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 201.	5.5	36
88	Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Molecular and Cellular Endocrinology, 2017, 457, 13-19.	3.2	35
89	Density-Dependent Metabolic Heterogeneity in Human Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3368-3381.	3.2	34
90	Biological Differences in rAAV Transduction of Airway Epithelia in Humans and in Old World Non-human Primates. Molecular Therapy, 2007, 15, 2114-2123.	8.2	33

#	Article	IF	CITATIONS
91	Mesenchymal Stem Cells. , 2008, 449, v-vii.		33
92	Reâ€endothelialization of rat lung scaffolds through passive, gravityâ€driven seeding of segmentâ€specific pulmonary endothelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e786-e806.	2.7	33
93	Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Engineering - Part C: Methods, 2021, 27, 124-138.	2.1	33
94	Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair. ELife, 2018, 7, .	6.0	33
95	Application of Adipose-Derived Stem Cells on Scleral Contact Lens Carrier in an Animal Model of Severe Acute Alkaline Burn. Eye and Contact Lens, 2014, 40, 243-247.	1.6	31
96	Macrophage Effects on Mesenchymal Stem Cell Osteogenesis in a Three-Dimensional <i>In Vitro</i> Bone Model. Tissue Engineering - Part A, 2020, 26, 1099-1111.	3.1	31
97	In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 621744.	4.8	31
98	Nonhuman Primate Lung Decellularization and Recellularization Using a Specialized Large-organ Bioreactor. Journal of Visualized Experiments, 2013, , e50825.	0.3	30
99	Increase in Leptin and PPAR-γ Gene Expression in Lipedema Adipocytes Differentiated in vitro from Adipose-Derived Stem Cells. Cells, 2020, 9, 430.	4.1	30
100	Adipose Stem Cells in Regenerative Medicine: Looking Forward. Frontiers in Bioengineering and Biotechnology, 2021, 9, 837464.	4.1	30
101	Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice. BMC Cell Biology, 2009, 10, 3.	3.0	29
102	Obesity-Altered Adipose Stem Cells Promote ER+ Breast Cancer Metastasis through Estrogen Independent Pathways. International Journal of Molecular Sciences, 2019, 20, 1419.	4.1	29
103	The 4th dimension and adult stem cells: Can timing be everything?. Journal of Cellular Biochemistry, 2009, 107, 569-578.	2.6	28
104	Bone Marrow Adipocyte Developmental Origin and Biology. Current Osteoporosis Reports, 2018, 16, 312-319.	3.6	27
105	Hypertensive Rat Lungs Retain Hallmarks of Vascular Disease upon Decellularization but Support the Growth of Mesenchymal Stem Cells. Tissue Engineering - Part A, 2014, 20, 1426-1443.	3.1	26
106	Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. Journal of Translational Medicine, 2016, 14, 27.	4.4	26
107	Neural Differentiation of Human Adipose Tissue-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 219-231.	0.9	26
108	Design, Synthesis, and Osteogenic Activity of Daidzein Analogs on Human Mesenchymal Stem Cells. ACS Medicinal Chemistry Letters, 2014, 5, 143-148.	2.8	24

#	Article	IF	CITATIONS
109	Adipose Stem Cells and Cancer: Concise Review. Stem Cells, 2019, 37, 1261-1266.	3.2	24
110	Adipose Tissue-Derived Stem Cells Retain Their Adipocyte Differentiation Potential in Three-Dimensional Hydrogels and Bioreactors. Biomolecules, 2020, 10, 1070.	4.0	24
111	Characterization of Human Adipose-Derived Stem Cells Using Flow Cytometry. Methods in Molecular Biology, 2011, 702, 121-131.	0.9	24
112	Isolation of Adult Rhesus Neural Stem and Progenitor Cells and Differentiation into Immature Oligodendrocytes. Stem Cells and Development, 2006, 15, 191-199.	2.1	23
113	Serially Transplanted Nonpericytic CD146â^' Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo. Stem Cells, 2016, 34, 1097-1111.	3.2	23
114	Human Adipose-Derived Hydrogel Characterization Based on <i>In Vitro</i> ASC Biocompatibility and Differentiation. Stem Cells International, 2019, 2019, 1-13.	2.5	23
115	Circadian rhythms in adipose tissue. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 554-561.	2.5	22
116	Multipotent Stromal Cells Alleviate Inflammation, Neuropathology, and Symptoms Associated with Globoid Cell Leukodystrophy in the Twitcher Mouse. Stem Cells, 2013, 31, 1523-1534.	3.2	22
117	Human Mesenchymal Stem Cellâ€Đerived Miniature Joint System for Disease Modeling and Drug Testing. Advanced Science, 2022, 9, e2105909.	11.2	22
118	Cell Growth Characteristics, Differentiation Frequency, and Immunophenotype of Adult Ear Mesenchymal Stem Cells. Stem Cells and Development, 2010, 19, 83-92.	2.1	21
119	Mesenchymal stem cells as a novel vaccine platform. Frontiers in Cellular and Infection Microbiology, 2012, 2, 140.	3.9	21
120	Analysis of the Pro- and Anti-Inflammatory Cytokines Secreted by Adult Stem Cells during Differentiation. Stem Cells International, 2015, 2015, 1-12.	2.5	21
121	Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e334.	0.6	20
122	Effect of Cryopreservation on Human Adipose Tissue and Isolated Stromal Vascular Fraction Cells: In Vitro and In Vivo Analyses. Plastic and Reconstructive Surgery, 2018, 141, 232e-243e.	1.4	20
123	Adipose-Derived Stem Cells from Obese Donors Polarize Macrophages and Microglia toward a Pro-Inflammatory Phenotype. Cells, 2021, 10, 26.	4.1	20
124	Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Experimental Hematology, 2005, 33, 1470-1476.	0.4	19
125	Large Animal Models of Neurological Disorders for Gene Therapy. ILAR Journal, 2009, 50, 128-143.	1.8	19
126	A novel patient-derived xenograft model for claudin-low triple-negative breast cancer. Breast Cancer Research and Treatment, 2018, 169, 381-390.	2.5	19

8

#	Article	IF	CITATIONS
127	Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model. BMC Cancer, 2019, 19, 205.	2.6	19
128	Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling. International Journal of Molecular Sciences, 2020, 21, 2722.	4.1	19
129	Mesenchymal Stem Cell-Based Therapy in a Mouse Model of Experimental Autoimmune Encephalomyelitis (EAE). Methods in Molecular Biology, 2014, 1213, 303-319.	0.9	19
130	Common transcriptional gene profile in neurospheres-derived from pATSCs, pBMSCs, and pNSCs. Biochemical and Biophysical Research Communications, 2006, 343, 762-771.	2.1	18
131	Potential application for mesenchymal stem cells in the treatment of cardiovascular diseases. Canadian Journal of Physiology and Pharmacology, 2005, 83, 529-539.	1.4	17
132	Biological aging alters circadian mechanisms in murine adipose tissue depots. Age, 2013, 35, 533-547.	3.0	17
133	Adipose stromal vascular fraction attenuates TH1 cell-mediated pathology in a model of multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 77.	7.2	17
134	Differentiation of nonhuman primate embryonic stem cells along neural lineages. Differentiation, 2009, 77, 229-238.	1.9	16
135	Taking Stem Cells Beyond Discovery: A Milestone in the Reporting of Regulatory Requirements for Cell Therapy. Stem Cells and Development, 2011, 20, 1295-1296.	2.1	16
136	Gender and age-related cell compositional differences in C57BL/6 murine adipose tissue stromal vascular fraction. Adipocyte, 2018, 7, 183-189.	2.8	16
137	Effect of intrastriatal mesenchymal stromal cell injection on progression of a murine model of Krabbe disease. Behavioural Brain Research, 2011, 225, 415-425.	2.2	15
138	Human cytomegalovirus infection of human adipose-derived stromal/stem cells restricts differentiation along the adipogenic lineage. Adipocyte, 2016, 5, 53-64.	2.8	15
139	Osteoinductive effects of glyceollins on adult mesenchymal stromal/stem cells from adipose tissue and bone marrow. Phytomedicine, 2017, 27, 39-51.	5.3	15
140	3D Spheroids Derived from Human Lipedema ASCs Demonstrated Similar Adipogenic Differentiation Potential and ECM Remodeling to Non-Lipedema ASCs In Vitro. International Journal of Molecular Sciences, 2020, 21, 8350.	4.1	15
141	Panobinostat suppresses the mesenchymal phenotype in a novel claudin-low triple negative patient-derived breast cancer model. Oncoscience, 2018, 5, 99-108.	2.2	15
142	Obesity Modulates the Gut Microbiome in Triple-Negative Breast Cancer. Nutrients, 2021, 13, 3656.	4.1	15
143	A Role for Adipocytes and Adipose Stem Cells in the Breast Tumor Microenvironment and Regenerative Medicine. Frontiers in Physiology, 2021, 12, 751239.	2.8	15
144	A dominant negative mutation in two proteins created by ectopic expression of an AU-rich 3? untranslated region. Somatic Cell and Molecular Genetics, 1990, 16, 151-162.	0.7	14

#	Article	lF	CITATIONS
145	Targeted Transduction of CD34 ⁺ Cells by Transdominant Negative Rev-Expressing Retrovirus Yields Partial Anti-HIV Protection of Progeny Macrophages. Human Gene Therapy, 1998, 9, 1197-1207.	2.7	14
146	Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. Advanced Biology, 2020, 4, e2000124.	3.0	14
147	Differentiation of Human Adipose-derived Stem Cells along the Keratocyte Lineage In vitro. Journal of Clinical & Experimental Ophthalmology, 2013, 04, .	0.1	14
148	Arginine vasopressin inhibits adipogenesis in human adipose-derived stem cells. Molecular and Cellular Endocrinology, 2015, 406, 1-9.	3.2	13
149	Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS ONE, 2020, 15, e0226464.	2.5	13
150	Phases I–III Clinical Trials Using Adult Stem Cells. Stem Cells International, 2010, 2010, 1-2.	2.5	12
151	Adipose Derived Cells and Tissues for Regenerative Medicine. ACS Biomaterials Science and Engineering, 2017, 3, 1477-1482.	5.2	12
152	Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. Current Stem Cell Reports, 2018, 4, 127-137.	1.6	12
153	Selective Extraction and Effective Separation of Galactosylsphingosine (Psychosine) and Glucosylsphingosine from Other Glycosphingolipids in Pathological Tissue Samples. Neurochemical Research, 2011, 36, 1612-1622.	3.3	11
154	Competitive DNA transfection formulation via electroporation for human adipose stem cells and mesenchymal stem cells. Biological Procedures Online, 2012, 14, 7.	2.9	11
155	High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behavioural Brain Research, 2013, 236, 35-47.	2.2	11
156	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies. Journal of Bone and Mineral Research, 2020, 35, 3-17.	2.8	11
157	Survival of aging CD264 ⁺ and CD264 ^{â^'} populations of human bone marrow mesenchymal stem cells is independent of colonyâ€forming efficiency. Biotechnology and Bioengineering, 2020, 117, 223-237.	3.3	11
158	Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling. Tissue Engineering - Part A, 2021, 27, 500-511.	3.1	11
159	The Effects of Macrophage Phenotype on Osteogenic Differentiation of MSCs in the Presence of Polyethylene Particles. Biomedicines, 2021, 9, 499.	3.2	11
160	Isolation and Culture of Rhesus Adipose-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 3-16.	0.9	11
161	Serial electrophysiologic studies in rhesus monkeys with Krabbe disease. Muscle and Nerve, 2005, 32, 185-190.	2.2	10
162	Molecular beacon genotyping for globoid cell leukodystrophy from hair roots in the twitcher mouse and rhesus macaque. Journal of Neuroscience Methods, 2007, 163, 60-66.	2.5	10

#	Article	IF	CITATIONS
163	Bisphenol A alters the self-renewal and differentiation capacity of human bone-marrow-derived mesenchymal stem cells. Endocrine Disruptors (Austin, Tex), 2016, 4, e1200344.	1.1	9
164	Safety and Efficacy of Human Adipose-Derived Stromal/Stem Cell Therapy in an Immunocompetent Murine Pressure Ulcer Model. Stem Cells and Development, 2020, 29, 440-451.	2.1	9
165	A novel tissue culture model for evaluating the effect of aging on stem cell fate in adult microvascular networks. GeroScience, 2020, 42, 515-526.	4.6	8
166	NODDI highlights recovery mechanisms in white and gray matter in ischemic stroke following human stem cell treatment. Magnetic Resonance in Medicine, 2021, 86, 3211-3223.	3.0	8
167	The role of MEK1/2 and MEK5 in melatoninâ€mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. Journal of Pineal Research, 2022, 73, .	7.4	8
168	Development of mammalian artificial chromosomes for the treatment of genetic diseases: Sandhoff and Krabbe diseases. Expert Opinion on Biological Therapy, 2005, 5, 195-206.	3.1	7
169	Gene Delivery to Mesenchymal Stem Cells. , 2008, 449, 153-167.		7
170	Lipedema: A Painful Adipose Tissue Disorder. , 2019, , .		7
171	Arguments for a Different Regulatory Categorization and Framework for Stromal Vascular Fraction. Stem Cells and Development, 2020, 29, 257-262.	2.1	7
172	Safety of Human Adipose Stromal Vascular Fraction Cells Isolated with a Closed System Device in an Immunocompetent Murine Pressure Ulcer Model. Stem Cells and Development, 2020, 29, 452-461.	2.1	7
173	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies – Secondary Publication. Journal of Orthopaedic Research, 2020, 38, 485-502.	2.3	7
174	Prospecting for Adipose Progenitor Cell Biomarkers: Biopanning for Gold with InÂVivo Phage Display. Cell Stem Cell, 2011, 9, 1-2.	11.1	6
175	Doublecortin May Play a Role in Defining Chondrocyte Phenotype. International Journal of Molecular Sciences, 2014, 15, 6941-6960.	4.1	6
176	Initial gene vector dosing for studying symptomatology of amyotrophic lateral sclerosis in nonâ€human primates. Journal of Medical Primatology, 2015, 44, 66-75.	0.6	6
177	Analysis of gene transfer efficiency of retrovirus producer cell transplantation for in situ gene transfer to hematopoietic cells. Experimental Hematology, 2001, 29, 163-173.	0.4	5
178	A Novel, Sterilized Microvascular Tissue Product Improves Healing in a Murine Pressure Ulcer Model. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e2010.	0.6	5
179	Aging phenotype(s) in kidneys of diabetic mice are p66ShcA dependent. American Journal of Physiology - Renal Physiology, 2018, 315, F1833-F1842.	2.7	5
180	MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells. Molecular Biology Reports, 2018, 45, 1545-1550.	2.3	5

#	Article	IF	CITATIONS
181	Acellular Biologic Nipple–Areolar Complex Graft: <i>In Vivo</i> Murine and Nonhuman Primate Host Response Evaluation. Tissue Engineering - Part A, 2020, 26, 872-885.	3.1	5
182	Non-homologous use of adipose-derived cell and tissue therapies: Osteoarthritis as a case study. Bone Reports, 2022, 17, 101601.	0.4	5
183	Characterization of adipose-derived stromal/stem cells from the twitcher mouse model of krabbe disease. BMC Cell Biology, 2013, 14, 20.	3.0	4
184	Short-Term Rapamycin Preconditioning Diminishes Therapeutic Efficacy of Human Adipose-Derived Stem Cells in a Murine Model of Multiple Sclerosis. Cells, 2020, 9, 2218.	4.1	4
185	Patient-Derived Xenografts as an Innovative Surrogate Tumor Model for the Investigation of Health Disparities in Triple Negative Breast Cancer. Women S Health Reports, 2020, 1, 383-392.	0.8	4
186	Establishing the adipose stem cell identity: Characterization assays and functional properties. , 2022, , 23-56.		4
187	Isolation and Growth of Stem Cells. , 2011, , 93-111.		4
188	Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells and Development, 2022, 31, 579-592.	2.1	4
189	Short-Term Autophagy Preconditioning Upregulates the Expression of COX2 and PGE2 and Alters the Immune Phenotype of Human Adipose-Derived Stem Cells In Vitro. Cells, 2022, 11, 1376.	4.1	4
190	Isolation and Flow Cytometric Analysis of the Stromal Vascular Fraction Isolated from Mouse Adipose Tissue. Methods in Molecular Biology, 2018, 1773, 1-9.	0.9	3
191	Discussion. Plastic and Reconstructive Surgery, 2019, 143, 757-758.	1.4	3
192	Modeling Joint Pain on a Chip: integrating sensory neurons in the microJoint to model osteoarthritis. Journal of Pain, 2021, 22, 583.	1.4	3
193	Viability of acellular biologic graft for nipple-areolar complex reconstruction in a non-human primate model. Scientific Reports, 2021, 11, 15085.	3.3	3
194	Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells and Development, 2022, 31, 604-620.	2.1	3
195	Glycinol enhances osteogenic differentiation and attenuates the effects of age on mesenchymal stem cells. Regenerative Medicine, 2017, 12, 513-524.	1.7	2
196	Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnology Journal, 2021, 16, e2000248.	3.5	2
197	Comparative Analysis of Human Adipose-Derived Stromal/Stem Cells and Dermal Fibroblasts. Stem Cells and Development, 2021, 30, 1171-1178.	2.1	2
198	Isolation and Primary Culture of Adult Human Adipose-derived Stromal/Stem Cells. Bio-protocol, 2017, 7, e2161.	0.4	2

#	Article	IF	CITATIONS
199	Macrophages Modulate the Function of MSC- and iPSC-Derived Fibroblasts in the Presence of Polyethylene Particles. International Journal of Molecular Sciences, 2021, 22, 12837.	4.1	2
200	Estrogen as a Contributing Factor to the Development of Lipedema. , 0, , .		1
201	Tracking Human Adiposeâ€Đerived Stem Cells (hASCs) in an Ex Vivo Microvascular Network Model. FASEB Journal, 2015, 29, 790.2.	0.5	1
202	Abstract P6-14-13: New approach to nipple reconstruction: In vivo evaluation of acellular nipple-areolar complex grafts. , 2020, , .		1
203	Excision of latent HIV-1: CRISPR technology overcomes viral strain diversity. EBioMedicine, 2021, 74, 103720.	6.1	1
204	Liver Kinase B1 Regulates Remodeling of the Tumor Microenvironment in Triple-Negative Breast Cancer. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1
205	Sleeping Beauty awakens!. Blood, 2006, 107, 416-417.	1.4	Ο
206	MSC Studies in Large-Animal Models. , 2013, , 237-258.		0
207	2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models. Journal of Clinical and Translational Science, 2018, 2, 14-14.	0.6	Ο
208	2057 L1 expression analysis in adipose-derived stem cells. Journal of Clinical and Translational Science, 2018, 2, 16-16.	0.6	0
209	Back Cover Image, Volume 117, Number 1, January 2020. Biotechnology and Bioengineering, 2020, 117, ii.	3.3	Ο
210	A novel screening approach comparing kinase activity of small molecule inhibitors with similar molecular structures and distinct biologic effects in triple-negative breast cancer to identify targetable signaling pathways. Anti-Cancer Drugs, 2020, 31, 759-775.	1.4	0
211	Preferential Survival of CD4+ T Lymphocytes Engineered with Anti-Human Immunodeficiency Virus (HIV) Genes in HIV-Infected Individuals. Human Gene Therapy, 2005, .	2.7	Ο
212	Fat Stem Cells. , 2008, , 143-174.		0
213	Marrow Stromal Mesenchymal Stem Cells. , 2010, , 121-138.		Ο
214	Abstract 1117: Triple negative breast cancer patient-derived xenografts as a translational model for discovery of novel therapeutic targets. , 2017, , .		0
215	Abstract A01: Application of patient-derived models from understudied patient populations to discover therapeutically targetable pathways in triple-negative breast cancer systems. , 2018, , .		0
216	Abstract C110: Applications of patient-derived triple-negative breast cancer xenografts that represent understudied patients in Louisiana in targeted therapeutic research. , 2020, , .		0

#	Article	IF	CITATIONS
217	Abstract 3866: Investigating tumor infiltrating immune cells signature in obese triple negative breast cancer. , 2020, , .		0
218	Abstract P6-03-17: Effect of histone deacetylase inhibitors on patient-derived neoadjuvant chemotherapy resistant triple negative breast cancer xenografts that represent understudied patients. , 2020, , .		0
219	International Federation for Adipose Therapeutics and Science and Stem Cells and Development: A Long-Term Relationship That Has Been Growing in Plain Sight. Stem Cells and Development, 2021, 30, 1139-1140.	2.1	Ο