
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nrf2 Mutation/Activation Is Dispensable for the Development of Chemically Induced Mouse HCC. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 113-127.	4.5	4
2	Diverse MicroRNAsâ€mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia. Cell Proliferation, 2022, 55, e13199.	5.3	2
3	Deletion of Lactate Dehydrogenase-A Impairs Oncogene-Induced Mouse Hepatocellular Carcinoma Development. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 609-624.	4.5	12
4	TG68, a Novel Thyroid Hormone Receptor-β Agonist for the Treatment of NAFLD. International Journal of Molecular Sciences, 2021, 22, 13105.	4.1	22
5	Design, synthesis and biological evaluation of novel TRÎ ² selective agonists sustained by ADME-toxicity analysis. European Journal of Medicinal Chemistry, 2020, 188, 112006.	5.5	16
6	Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers, 2020, 12, 2932.	3.7	12
7	Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers, 2020, 12, 3318.	3.7	3
8	Distinct Mechanisms Are Responsible for Nrf2-Keap1 Pathway Activation at Different Stages of Rat Hepatocarcinogenesis. Cancers, 2020, 12, 2305.	3.7	14
9	Understanding Metal Dynamics Between Cancer Cells and Macrophages: Competition or Synergism?. Frontiers in Oncology, 2020, 10, 646.	2.8	26
10	Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. Journal of Hepatology, 2020, 72, 1159-1169.	3.7	38
11	Potential role of two novel agonists of thyroid hormone receptorâ€Î² on liver regeneration. Cell Proliferation, 2020, 53, e12808.	5.3	13
12	Clustered protocadherins methylation alterations in cancer. Clinical Epigenetics, 2019, 11, 100.	4.1	33
13	Yes-associated protein promotes early hepatocyte cell cycle progression in regenerating liver after tissue loss. FASEB BioAdvances, 2019, 1, 51-61.	2.4	17
14	A Large Set of miRNAs Is Dysregulated from the Earliest Steps of Human Hepatocellular Carcinoma Development. American Journal of Pathology, 2018, 188, 785-794.	3.8	15
15	Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor. International Journal of Cancer, 2018, 143, 907-920.	5.1	41
16	Estimation of a significance threshold for epigenomeâ€wide association studies. Genetic Epidemiology, 2018, 42, 20-33.	1.3	133
17	High Frequency of β-Catenin Mutations in Mouse Hepatocellular Carcinomas Induced by a Nongenotoxic Constitutive Androstane Receptor Agonist. American Journal of Pathology, 2018, 188, 2497-2507.	3.8	13
18	Genetic inactivation of Nrf2 prevents clonal expansion of initiated cells in a nutritional model of rat hepatocarcinogenesis. Journal of Hepatology, 2018, 69, 635-643.	3.7	31

#	Article	IF	CITATIONS
19	Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Frontiers in Endocrinology, 2018, 9, 382.	3.5	41
20	miRâ€205 mediates adaptive resistance to <scp>MET</scp> inhibition via <scp>ERRFI</scp> 1 targeting and raised <scp>EGFR</scp> signaling. EMBO Molecular Medicine, 2018, 10, .	6.9	23
21	Thyroid Hormone Receptor-β Agonist GC-1 Inhibits Met-β-Catenin–Driven Hepatocellular Cancer. American Journal of Pathology, 2017, 187, 2473-2485.	3.8	19
22	Unacylated ghrelin prevents mitochondrial dysfunction in a model of ischemia/reperfusion liver injury. Cell Death Discovery, 2017, 3, 17077.	4.7	23
23	Emerging Role of the Pentose Phosphate Pathway in Hepatocellular Carcinoma. Frontiers in Oncology, 2017, 7, 87.	2.8	112
24	Editorial: Metabolism As a Therapeutic Target. Frontiers in Oncology, 2017, 7, 266.	2.8	3
25	GC-1: A Thyromimetic With Multiple Therapeutic Applications in Liver Disease. Gene Expression, 2017, 17, 265-275.	1.2	12
26	The Thyromimetic KB2115 (Eprotirome) Induces Rat Hepatocyte Proliferation. Gene Expression, 2017, 17, 207-218.	1.2	6
27	A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis. Oncotarget, 2017, 8, 15716-15731.	1.8	5
28	Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget, 2016, 7, 32375-32393.	1.8	83
29	Thyroid Hormone Receptor β Agonist Induces β-Catenin-Dependent Hepatocyte Proliferation in Mice: Implications in Hepatic Regeneration. Gene Expression, 2016, 17, 19-34.	1.2	42
30	T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocrine-Related Cancer, 2016, 23, R353-R369.	3.1	19
31	The Dual Roles of NRF2 in Cancer. Trends in Molecular Medicine, 2016, 22, 578-593.	6.7	508
32	The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. Journal of Hepatology, 2016, 64, 891-898.	3.7	34
33	Constitutive androstane receptor (Car)-driven regeneration protects liver from failure following tissue loss. Journal of Hepatology, 2016, 65, 66-74.	3.7	50
34	Induction of autophagy promotes the growth of early preneoplastic rat liver nodules. Oncotarget, 2016, 7, 5788-5799.	1.8	32
35	Nrf2, but not βâ€catenin, mutation represents an early event in rat hepatocarcinogenesis. Hepatology, 2015, 62, 851-862.	7.3	81
36	Reply to: "YAP in tumorigenesis: Friend or foe?― Journal of Hepatology, 2015, 62, 1445.	3.7	1

#	Article	IF	CITATIONS
37	Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology, 2015, 61, 249-259.	7.3	63
38	Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget, 2015, 6, 38749-38763.	1.8	24
39	Tri-iodothyronine induces hepatocyte proliferation by protein kinase a-dependent β-catenin activation in rodents. Hepatology, 2014, 59, 2309-2320.	7.3	62
40	Met as a therapeutic target in HCC: Facts and hopes. Journal of Hepatology, 2014, 60, 442-452.	3.7	150
41	MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC). Hepatology, 2014, 59, 228-241.	7.3	107
42	YAP activation is an early event and a potential therapeutic target in liver cancer development. Journal of Hepatology, 2014, 61, 1088-1096.	3.7	191
43	Timed regulation of P-element-induced wimpy testis-interacting RNA expression during rat liver regeneration. Hepatology, 2014, 60, 798-806.	7.3	48
44	MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?. Hepatology, 2013, 57, 840-847.	7.3	320
45	Triiodothyronineâ€Induced Hepatocyte Proliferation Requires β atenin. FASEB Journal, 2013, 27, 257.5.	0.5	0
46	Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene, 2012, 31, 4517-4526.	5.9	69
47	MiR-1 Downregulation Cooperates with MACC1 in Promoting <i>MET</i> Overexpression in Human Colon Cancer. Clinical Cancer Research, 2012, 18, 737-747.	7.0	116
48	Wnt∫l²â€catenin pathway is activated by thyroid hormone and is required for its hepatomitogenic activity. FASEB Journal, 2012, 26, .	0.5	0
49	Proteomic Characterization of Early Changes Induced by Triiodothyronine in Rat Liver. Journal of Proteome Research, 2011, 10, 3212-3224.	3.7	18
50	Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice. Journal of Clinical Investigation, 2011, 121, 4491-4502.	8.2	62
51	Expression of c-jun is not mandatory for mouse hepatocyte proliferation induced by two nuclear receptor ligands: TCPOBOP and T3. Journal of Hepatology, 2011, 55, 1069-1078.	3.7	8
52	Yesâ€associated protein regulation of adaptive liver enlargement and hepatocellular carcinoma development in mice. Hepatology, 2011, 53, 2086-2096.	7.3	71
53	Gender-Specific Interplay of Signaling through β-Catenin and CAR in the Regulation of Xenobiotic-Induced Hepatocyte Proliferation. Toxicological Sciences, 2011, 123, 113-122.	3.1	36
54	Hepatocyte Growth, Proliferation and Experimental Carcinogenesis. Molecular Pathology Library, 2011, , 791-813.	0.1	1

#	Article	IF	CITATIONS
55	Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology, 2010, 51, 1401-1409.	7.3	118
56	The TRβ-selective agonist, GC-1, stimulates mitochondrial oxidative processes to a lesser extent than triiodothyronine. Journal of Endocrinology, 2010, 205, 279-289.	2.6	12
57	TRÎ ² is the critical thyroid hormone receptor isoform in T3-induced proliferation of hepatocytes and pancreatic acinar cells. Journal of Hepatology, 2010, 53, 686-692.	3.7	60
58	T3 and the thyroid hormone β-receptor agonist GC-1 differentially affect metabolic capacity and oxidative damage in rat tissues. Journal of Experimental Biology, 2009, 212, 986-993.	1.7	9
59	Thyroid hormone receptor ligands induce regression of rat preneoplastic liver lesions causing their reversion to a differentiated phenotype. Hepatology, 2009, 49, 1287-1296.	7.3	58
60	Potential utility of xenobiotic mitogens in the context of liver regeneration in the elderly and living-related transplantation. Laboratory Investigation, 2008, 88, 408-415.	3.7	5
61	Triiodothyronine stimulates hepatocyte proliferation in two models of impaired liver regeneration. Cell Proliferation, 2008, 41, 521-531.	5.3	34
62	Thyroid hormone (T3) and TRβ agonist GCâ€1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB Journal, 2008, 22, 2981-2989.	0.5	112
63	Â-lipoic acid promotes the growth of rat hepatic pre-neoplastic lesions in the choline-deficient model. Carcinogenesis, 2007, 29, 161-168.	2.8	16
64	Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene. Cancer Letters, 2007, 251, 311-316.	7.2	46
65	Increased ROS generation and p53 activation in α-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 113-123.	4.9	135
66	The Thyroid Hormone Receptor-Î ² Agonist GC-1 Induces Cell Proliferation in Rat Liver and Pancreas. Endocrinology, 2006, 147, 3211-3218.	2.8	39
67	Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB Journal, 2006, 20, 87-94.	0.5	37
68	Gadd45β is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology, 2005, 42, 1118-1126.	7.3	90
69	Induction of pancreatic acinar cell proliferation by thyroid hormone. Journal of Endocrinology, 2005, 185, 393-399.	2.6	48
70	Induction of hepatocyte proliferation by retinoic acid. Carcinogenesis, 2004, 25, 2061-2066.	2.8	25
71	Aging does not reduce the hepatocyte proliferative response of mice to the primary mitogen TCPOBOP. Hepatology, 2004, 40, 981-988.	7.3	42
72	The peroxisome proliferator BR931 kills FaO cells by p53-dependent apoptosis. Life Sciences, 2004, 75, 271-286.	4.3	8

#	Article	IF	CITATIONS
73	Aging does not reduce the hepatocyte proliferative response of mice to the primary mitogen TCPOBOP. Hepatology, 2004, 40, 981-988.	7.3	19
74	A common set of immediate-early response genes in liver regeneration and hyperplasia. Hepatology, 2003, 38, 314-325.	7.3	75
75	Mitogenesis by ligands of nuclear receptors: an attractive model for the study of the molecular mechanisms implicated in liver growth. Cell Death and Differentiation, 2003, 10, S19-S21.	11.2	44
76	Different Effects of the Liver Mitogens Triiodo-Thyronine and Ciprofibrate on the Development of Rat Hepatocellular Carcinoma. Toxicologic Pathology, 2003, 31, 113-120.	1.8	19
77	Sex difference in the proliferative response of mouse hepatocytes to treatment with the CAR ligand, TCPOBOP. Carcinogenesis, 2003, 24, 1059-1065.	2.8	54
78	Different Effects of the Liver Mitogens Triiodo-Thyronine and Ciprofibrate on the Development of Rat Hepatocellular Carcinoma. Toxicologic Pathology, 2003, 31, 113-120.	1.8	2
79	Loss of cyclin D1 does not inhibit the proliferative response of mouse liver to mitogenic stimuli. Hepatology, 2002, 36, 1098-1105.	7.3	40
80	Peroxisome proliferator–activated receptor-αâ^'/â^' mice show enhanced hepatocyte proliferation in response to the hepatomitogen 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene, a ligand of constitutive androstane receptor. Hepatology, 2001, 34, 262-266.	7.3	31
81	Regulatory effects of senescence marker protein 30 on the proliferation of hepatocytes. Pathology International, 2001, 51, 491-497.	1.3	22
82	Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB Journal, 2001, 15, 1006-1013.	0.5	123
83	Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB Journal, 2001, 15, 1006-1013.	0.5	40
84	Early Increase in Cyclin-D1 Expression and Accelerated Entry of Mouse Hepatocytes into S Phase after Administration of the Mitogen 1,4-Bis[2-(3,5-Dichloropyridyloxy)] Benzene. American Journal of Pathology, 2000, 156, 91-97.	3.8	94
85	Ciprofibrate and triiodothyronine do not suppress in vivo induction of placental glutathione S-transferase expression in rat hepatocytes. Cancer Letters, 2000, 151, 153-159.	7.2	2
86	Cell proliferation induced by 3,3′,5-triiodo-L-thyronine is associated with a reduction in the number of preneoplastic hepatic lesions. Carcinogenesis, 1999, 20, 2299-2304.	2.8	24
87	In vivo hepatocyte proliferation is inducible through a TNF and IL-6-independent pathway. Oncogene, 1998, 17, 1039-1044.	5.9	90
88	Increased expression of c-fos, c-jun and LRF-1 is not required for in vivo priming of hepatocytes by the mitogen TCPOBOP. Oncogene, 1997, 14, 857-863.	5.9	58
89	Liver cell proliferation induced by nafenopin and cyproterone acetate is not associated with increases in activation of transcription factors NF-?B and AP-1 or with expression of tumor necrosis factor ?. Hepatology, 1997, 25, 585-592.	7.3	67
90	ANTIAPOPTOTIC COMPOUND TO ENHANCE HYPOTHERMIC LIVER PRESERVATION1. Transplantation, 1997, 63, 803-809.	1.0	18

#	Article	IF	CITATIONS
91	9-Cis retinoic acid is a direct hepatocyte mitogen in rats. Life Sciences, 1996, 58, PL211-PL216.	4.3	21
92	Liver regeneration versus direct hyperplasia. FASEB Journal, 1996, 10, 1118-1128.	0.5	185
93	Possible roles of nonparenchymal cells in hepatocyte proliferation induced by lead nitrate and by tumor necrosis factor ?. Hepatology, 1996, 23, 1572-1577.	7.3	29
94	Qualitative and quantitative analysis of AgNOR proteins in chemically induced rat liver carcinogenesis. Hepatology, 1996, 24, 1269-1273.	7.3	14
95	Effects of cell proliferation and cell death (apoptosis and necrosis) on the early stages of rat hepatocarcinogenesis. Carcinogenesis, 1996, 17, 395-400.	2.8	34
96	Qualitative and quantitative analysis of AgNOR proteins in chemically induced rat liver carcinogenesis. Hepatology, 1996, 24, 1269-1273.	7.3	2
97	Genetic mapping and expression analysis of the murine DNA ligase I gene. Molecular Carcinogenesis, 1995, 14, 71-74.	2.7	9
98	Cell death: Current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. Journal of Cellular Biochemistry, 1995, 58, 181-190.	2.6	203
99	Genotoxic and non-genotoxic activities of 2,4- and 2,6-diaminotoluene, as evaluated in Fischer-344 rat liver. Toxicology, 1995, 99, 1-10.	4.2	27
100	An electron microscopic study of apoptosis induced by cycloheximide in rat liver. Liver, 1994, 14, 270-278.	0.1	26
101	Differences in the steady-state levels of c-fos, c-jun and c-myc messenger RNA during mitogen-induced liver growth and compensatory regeneration. Hepatology, 1993, 17, 1109-1116.	7.3	58
102	Different Effects of Regenerative and Direct Mitogenic Stimuli on the Growth of Initiated Cells in the Resistant Hepatocyte Model. Japanese Journal of Cancer Research, 1993, 84, 501-507.	1.7	7
103	Compensatory Regeneration, Mitogen-Induced Liver Growth, and Multistage Chemical Carcinogenesis. Environmental Health Perspectives, 1993, 101, 163.	6.0	2
104	Ploidy and nuclearity of rat hepatocytes after compensatory regeneration or mitogen-induced liver growth. Carcinogenesis, 1993, 14, 1825-1830.	2.8	57
105	Mitogen-induced liver hyperplasia does not substitute for compensatory regeneration during promotion of chemical hepatocarcinogenesis. Carcinogenesis, 1992, 13, 379-383.	2.8	30
106	Stimulation of DNA synthesis by rat plasma following in vivo treatment with three liver mitogens. Cancer Letters, 1992, 61, 233-238.	7.2	6
107	Involvement of DNA polymerase β in proliferation of rat liver induced by lead nitrate or partial hepatectomy. FEBS Letters, 1992, 310, 135-138.	2.8	9
108	Expression of the gene for poly(ADP-ribose) polymerase and DNA polymerase beta in rat tissues and in proliferating cells. , 1992, , 86-91.		0

#	Article	IF	CITATIONS
109	Apoptosis: a general comment. FASEB Journal, 1991, 5, 2127-2128.	0.5	66
110	Liver hyperplasia is not necessarily associated with increased expression of c-fos and c-myc mRNA. Carcinogenesis, 1990, 11, 835-839.	2.8	36
111	Cell proliferation and promotion of rat liver carcinogenesis: different effect of hepatic regeneration and mitogen induced hyperplasia on the development of enzyme-altered foci. Carcinogenesis, 1990, 11, 771-776.	2.8	89
112	Effect of lead nitrate on liver carbohydrate enzymes and glycogen content in the rat. Carcinogenesis, 1990, 11, 2199-2204.	2.8	10
113	Regulation of poly(ADP-ribose) polymerase mRNA levels during compensatory and mitogen-induced growth of rat liver. Archives of Biochemistry and Biophysics, 1990, 279, 232-236.	3.0	22
114	Further evidence that mitogen-induced cell proliferation does not support the formation of enzyme-altered islands in rat liver by carcinogens. Carcinogenesis, 1989, 10, 847-850.	2.8	41
115	Induction of rat liver glutathione transferase subunit 7 by lead nitrate. Cancer Letters, 1989, 46, 167-171.	7.2	8
116	Studies on the kinetics of expression of cell cycle dependent proto-oncogenes during mitogen-induced liver cell proliferation. Cancer Letters, 1989, 47, 115-119.	7.2	17
117	Can Apoptosis Influence Initiation of Chemical Hepatocarcinogenesis?. , 1988, , 281-292.		3
118	HMP-Shunt and Cholesterol Metabolism in Experimental Models Involving Normal and Preneoplastic Liver Growth. Toxicologic Pathology, 1987, 15, 43-50.	1.8	10
119	Induction of the Placental Form of Glutathione S-Transferase by Lead Nitrate Administration in Rat Liver. Toxicologic Pathology, 1987, 15, 202-205.	1.8	9
120	Failure of mitogen-induced cell proliferation to achieve initiation of rat liver carcinogenesis. Carcinogenesis, 1987, 8, 345-347.	2.8	41
121	Liver cell proliferation induced by the mitogen ethylene dibromide, unlike compensatory cell proliferation, does not achieve initiation of rat liver carcinogenesis by diethylnitrosamine. Cancer Letters, 1987, 36, 247-252.	7.2	2
122	Cell proliferation in rat kidney induced by 1,2-dibromoethane. Toxicology Letters, 1987, 37, 85-90.	0.8	10
123	Uneven copper distribution in the human newborn liver. Hepatology, 1987, 7, 838-842.	7.3	48
124	Hexose monophosphate shunt and cholesterogenesis in lead-induced kidney hyperplasia. Chemico-Biological Interactions, 1987, 62, 209-215.	4.0	12
125	Lead nitrate induces certain biochemical properties characteristic of hepatocyte nodules. Carcinogenesis, 1986, 7, 1643-1646.	2.8	39
126	Enhancement of cholesterol synthesis and pentose phosphate pathway activity in proliferating hepatocyte nodules. Carcinogenesis, 1985, 6, 1371-1373.	2.8	47

#	Article	IF	CITATIONS
127	Liver Hyperplasia and Regression after Lead Nitrate Administration. Toxicologic Pathology, 1984, 12, 89-95.	1.8	22
128	Stimulation of DNA synthesis after a single administration of cadmium nitrate. Toxicology Letters, 1984, 23, 267-272.	0.8	3
129	Dietary orotic acid, a new selective growth stimulus for carcinogen altered hepatocytes in ratâ~†. Cancer Letters, 1982, 16, 191-196.	7.2	40
130	Stimulation of rat liver growth by a single administration of lead nitrate. Toxicology and Applied Pharmacology, 1982, 65, 478-480.	2.8	10
131	In vivo replication of hepatic deoxyribonucleic acid of rats treated with dimethylnitrosamine: presence of dimethylnitrosamine-induced O6-methylguanine, N7-methylguanine, and N3-methyladenine in the replicated hybrid deoxyribonucleic acid. Biochemistry, 1980, 19, 1382-1387.	2.5	26
132	Requirement of cell proliferation for the induction of presumptive preneoplastic lesions in rat liver by a single dose of 1,2-dimethylhydrazine. Chemico-Biological Interactions, 1980, 32, 347-351.	4.0	9
133	In vivo replication of carcinogen-modified rat liver DNA: Increased susceptibility of 06-methylguanine compared to N-7-methylguanine in replicated DNA to S1-nuclease. Biochemical and Biophysical Research Communications, 1980, 95, 816-821.	2.1	6
134	Susceptibility of dimethylnitrosamine induced O6-methylguanine containing regions in in vivo replicated, hybrid rat liver DNA towards S1 nucleaseâ~†. Cancer Letters, 1980, 10, 333-338.	7.2	1
135	Differential effects of choline administration on liver microsomes of female and male rats. Experimental and Molecular Pathology, 1978, 28, 154-162.	2.1	9
136	Effect of choline administration on the toxicity of N-nitrosodimethylamine in female rats. Toxicology and Applied Pharmacology, 1977, 42, 613-616.	2.8	3
137	Early investigations on the effect of methyl mercuric chloride upon DMN-acute hepatotoxicity. Experientia, 1976, 32, 1449-1451.	1.2	2
138	Influence of lead nitrate oń dimethylnitrosamine intoxication. Chemico-Biological Interactions, 1976, 15, 107-116.	4.0	3