Alexei A Aravin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5725135/publications.pdf

Version: 2024-02-01

46 papers

11,494 citations

33 h-index 223800 46 g-index

53 all docs 53 docs citations

53 times ranked 7890 citing authors

#	Article	IF	CITATIONS
1	A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium <i>Kurthia massiliensis</i> i>. Nucleic Acids Research, 2021, 49, 4054-4065.	14.5	53
2	piRNA-mediated gene regulation and adaptation to sex-specific transposon expression in <i>D. melanogaster</i> male germline. Genes and Development, 2021, 35, 914-935.	5.9	46
3	Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nature Communications, 2021, 12, 4061.	12.8	11
4	RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility. PLoS Genetics, 2021, 17, e1009591.	3.5	19
5	Transposon-taming piRNAs in the germline: Where do they come from?. Molecular Cell, 2021, 81, 3884-3885.	9.7	6
6	Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. Molecular Cell, 2020, 77, 556-570.e6.	9.7	74
7	The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Molecular Cell, 2020, 77, 571-585.e4.	9.7	36
8	DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 2020, 587, 632-637.	27.8	114
9	Recognition of double-stranded DNA by the Rhodobacter sphaeroides Argonaute protein. Biochemical and Biophysical Research Communications, 2020, 533, 1484-1489.	2.1	5
10	Pachytene piRNAs as beneficial regulators or a defense system gone rogue. Nature Genetics, 2020, 52, 644-645.	21.4	9
11	Genome-wide DNA sampling by Ago nuclease from the cyanobacterium <i>Synechococcus elongatus</i> . RNA Biology, 2020, 17, 677-688.	3.1	41
12	Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Frontiers in Genetics, 2020, 11, 610665.	2.3	14
13	Repression of interrupted and intact rDNA by the SUMO pathway in Drosophila melanogaster. ELife, 2020, 9, .	6.0	12
14	The control of gene expression and cell identity by H3K9 trimethylation. Development (Cambridge), 2019, 146, .	2.5	93
15	Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Research, 2019, 47, 5822-5836.	14.5	92
16	piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster. Nucleic Acids Research, 2019, 47, 4255-4271.	14.5	46
17	The Expanded Universe of Prokaryotic Argonaute Proteins. MBio, 2018, 9, .	4.1	101
18	DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nature Communications, 2018, 9, 5165.	12.8	99

#	Article	IF	Citations
19	Accommodation of Helical Imperfections in Rhodobacter sphaeroides Argonaute Ternary Complexes with Guide RNA and Target DNA. Cell Reports, 2018, 24, 453-462.	6.4	47
20	Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nature Genetics, 2017, 49, 876-886.	21.4	81
21	piRNA Biogenesis in Drosophila melanogaster. Trends in Genetics, 2017, 33, 882-894.	6.7	119
22	Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in <i>Drosophila</i> . Genes and Development, 2016, 30, 840-855.	5.9	71
23	Cutoff Suppresses RNA Polymerase II Termination to Ensure Expression of piRNA Precursors. Molecular Cell, 2016, 63, 97-109.	9.7	116
24	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	27.8	244
25	Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Molecular Cell, 2015, 59, 564-575.	9.7	98
26	Non-coding RNAs in Transcriptional Regulation. Current Molecular Biology Reports, 2015, 1, 10-18.	1.6	33
27	Pitfalls of Mapping High-Throughput Sequencing Data to Repetitive Sequences: Piwi's Genomic Targets Still Not Identified. Developmental Cell, 2015, 32, 765-771.	7.0	26
28	MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation. Cell Reports, 2015, 12, 1234-1243.	6.4	98
29	A Transgenerational Process Defines piRNA Biogenesis in Drosophila virilis. Cell Reports, 2014, 8, 1617-1623.	6.4	49
30	Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes and Development, 2014, 28, 1667-1680.	5.9	204
31	Two waves of de novo methylation during mouse germ cell development. Genes and Development, 2014, 28, 1544-1549.	5.9	123
32	piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes and Development, 2014, 28, 1410-1428.	5.9	184
33	Bacterial Argonaute Samples the Transcriptome to Identify Foreign DNA. Molecular Cell, 2013, 51, 594-605.	9.7	200
34	Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes and Development, 2013, 27, 390-399.	5.9	429
35	Production of artificial piRNAs in flies and mice. Rna, 2012, 18, 42-52.	3.5	94
36	Arginine methylation as a molecular signature of the Piwi small RNA pathway. Cell Cycle, 2009, 8, 4003-4004.	2.6	21

#	Article	IF	CITATIONS
37	Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice. PLoS Genetics, 2009, 5, e1000764.	3.5	252
38	A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA Methylation in Mice. Molecular Cell, 2008, 31, 785-799.	9.7	1,029
39	An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing. Science, 2008, 322, 1387-1392.	12.6	686
40	Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell, 2007, 128, 1089-1103.	28.9	2,215
41	The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race. Science, 2007, 318, 761-764.	12.6	941
42	Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control. Science, 2007, 316, 744-747.	12.6	879
43	A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442, 203-207.	27.8	1,303
44	Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 2005, 579, 5830-5840.	2.8	214
45	Dissection of a Natural RNA Silencing Process in the Drosophila melanogaster Germ Line. Molecular and Cellular Biology, 2004, 24, 6742-6750.	2.3	166
46	Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 2001, 11, 1017-1027.	3.9	685