List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts. Journal of Carbon Research, 2022, 8, 7.	2.7	2
2	Adsorbents selection for the enrichment of low-grade methane coal mine emissions by temperature and pressure swing adsorption technologies. Journal of Natural Gas Science and Engineering, 2022, 105, 104721.	4.4	4
3	Biological absorption as main route for amoxicillin reduction and heterotrophic kinetic modeling in a "NIPHO―bioreactor. Journal of Environmental Chemical Engineering, 2021, 9, 104775.	6.7	1
4	A new strategy for upgrading ventilation air methane emissions combining adsorption and combustion in a lean-gas turbine. Journal of Natural Gas Science and Engineering, 2021, 88, 103808.	4.4	6
5	Selective synthesis of γ-valerolactone from levulinic and formic acid over ZnAl mixed oxide. Chemical Engineering Journal, 2021, 414, 128902.	12.7	11
6	A review of the adsorption-biological hybrid processes for the abatement of emerging pollutants: Removal efficiencies, physicochemical analysis, and economic evaluation. Science of the Total Environment, 2021, 780, 146554.	8.0	37
7	From biomass to diesel additives: Hydrogenation of cyclopentanone-furfural aldol condensation adducts. Journal of Environmental Chemical Engineering, 2021, 9, 105328.	6.7	10
8	One-Pot Conversion of Acetone into Mesitylene over Combinations of Acid and Basic Catalysts. ACS Catalysis, 2021, 11, 11650-11662.	11.2	10
9	Effect of pretreatments and catalytic route in the quality and productivity of biodiesel obtained from secondary sludge. Biomass and Bioenergy, 2021, 152, 106195.	5.7	12
10	The Role of Heterogeneous Catalytic Processes in the Green Hydrogen Economy. Catalysts, 2021, 11, 1185.	3.5	0
11	Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. Science of the Total Environment, 2021, 790, 148211.	8.0	24
12	Biodiesel production from wastewater sludge using exchange resins as heterogeneous acid catalyst: Catalyst selection and sludge pre-treatments. Journal of Water Process Engineering, 2021, 44, 102335.	5.6	14
13	Optimization of the process conditions for minimizing the deactivation in the furfural-cyclopentanone aldol condensation in a continuous reactor. Applied Catalysis B: Environmental, 2020, 263, 118341.	20.2	12
14	Methane separation from diluted mixtures by fixed bed adsorption using MOFs: Model validation and parametric studies. Separation and Purification Technology, 2020, 251, 117374.	7.9	10
15	Combining the projectâ€based learning methodology and computer simulation to enhance the engagement in the context of Environmental Engineering courses. Computer Applications in Engineering Education, 2020, 28, 1311-1326.	3.4	3
16	Densification-Induced Structure Changes in Basolite MOFs: Effect on Low-Pressure CH4 Adsorption. Nanomaterials, 2020, 10, 1089.	4.1	14
17	Aldol Condensation of Biomass-Derived Levulinic Acid and Furfural over Acid Zeolites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4371-4383.	6.7	21
18	Effect of catalyst morphology and hydrogen co-feeding on the acid-catalysed transformation of acetone into mesitylene. Catalysis Science and Technology, 2020, 10, 1356-1367.	4.1	6

#	Article	IF	CITATIONS
19	Adsorption of methane and nitrogen on Basolite MOFs: Equilibrium and kinetic studies. Microporous and Mesoporous Materials, 2020, 298, 110048.	4.4	21
20	Aqueousâ€Phase Transformation of Glucose into Hydroxymethylfurfural and Levulinic Acid by Combining Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2019, 12, 924-934.	6.8	51
21	Effect of metal modification of titania and hydrogen co-feeding on the reaction pathways and catalytic stability in the acetone aldol condensation. Journal of Catalysis, 2019, 377, 133-144.	6.2	9
22	Carbon Materials as Phaseâ€Transfer Promoters for Obtaining 5â€Hydroxymethylfurfural from Cellulose in a Biphasic System. ChemSusChem, 2019, 12, 3769-3777.	6.8	13
23	Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clinical Cancer Research, 2019, 25, 4846-4858.	7.0	79
24	Effect of Substituents on Partial Photocatalytic Oxidation of Aromatic Alcohols Assisted by Polymeric C ₃ N ₄ . ChemCatChem, 2019, 11, 2713-2724.	3.7	27
25	Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Science and Technology, 2019, 79, 480-488.	2.5	17
26	Effect of sewage sludge composition on the susceptibility to spontaneous combustion. Journal of Hazardous Materials, 2019, 361, 267-272.	12.4	20
27	Influence of nalidixic acid on tandem heterotrophic-autotrophic kinetics in a "NIPHO―activated sludge reactor. Chemosphere, 2019, 218, 128-137.	8.2	4
28	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	6.2	68
29	Tuning the selectivities of Mg-Al mixed oxides for ethanol upgrading reactions through the presence of transition metals. Applied Catalysis A: General, 2018, 559, 167-174.	4.3	21
30	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 2018, 315, 138-148.	4.4	47
31	Effect of sludge features and extraction-esterification technology on the synthesis of biodiesel from secondary wastewater treatment sludges. Bioresource Technology, 2018, 247, 209-216.	9.6	30
32	Effect of Au nanoparticles on the activity of TiO 2 for ethanol upgrading reactions. Applied Catalysis A: General, 2018, 551, 23-33.	4.3	27
33	Enhancement of furfural–cyclopentanone aldol condensation using binary water–ethanol mixtures as solvent. Journal of Chemical Technology and Biotechnology, 2018, 93, 1563-1571.	3.2	15
34	Carbon nanotube modified glassy carbon electrode for electrochemical oxidation of alkylphenol ethoxylate. Water Science and Technology, 2018, 77, 2436-2444.	2.5	7
35	Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg-Al mixed oxide. Applied Catalysis A: General, 2018, 563, 64-72.	4.3	19
36	Copperâ€Basic Sites Synergic Effect on the Ethanol Dehydrogenation and Condensation Reactions. ChemCatChem, 2018, 10, 3583-3592.	3.7	15

#	Article	IF	CITATIONS
37	Cyclopentanone as an Alternative Linking Reactant for Heterogeneously Catalyzed Furfural Aldol Condensation. ChemCatChem, 2017, 9, 1765-1770.	3.7	32
38	Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO ₂ Anatase. Journal of Physical Chemistry C, 2017, 121, 6770-6780.	3.1	39
39	Photocatalytic degradation of 2-(4-methylphenoxy)ethanol over TiO2 spheres. Journal of Hazardous Materials, 2017, 332, 59-69.	12.4	8
40	Aqueous Phase Conversion of Hexoses into 5-Hydroxymethylfurfural and Levulinic Acid in the Presence of Hydrochloric Acid: Mechanism and Kinetics. Industrial & Engineering Chemistry Research, 2017, 56, 5221-5230.	3.7	58
41	Role of the surface intermediates in the stability of basic mixed oxides as catalyst for ethanol condensation. Applied Catalysis A: General, 2017, 542, 271-281.	4.3	20
42	Carbon nitride assisted chemoselective C–H bond photo-oxidation of alkylphenolethoxylates in water medium. Green Chemistry, 2017, 19, 4299-4304.	9.0	16
43	Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes. Journal of Hazardous Materials, 2017, 323, 621-631.	12.4	7
44	Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Applied Catalysis B: Environmental, 2017, 201, 221-231.	20.2	68
45	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 2017, 204, 430-439.	20.2	156
46	Micropollutants pre-concentration using adsorption-desorption cycles: application to chlorinated paraffins and alkyl-phenol derivatives. Journal of Chemical Technology and Biotechnology, 2017, 92, 1076-1084.	3.2	1
47	Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets. Oncotarget, 2017, 8, 111386-111395.	1.8	33
48	Base atalyzed Condensation of Levulinic Acid: A New Biorefinery Upgrading Approach. ChemCatChem, 2016, 8, 1490-1494.	3.7	36
49	Hydrodeoxygenation of furfural-acetone condensation adducts to tridecane over platinum catalysts. Catalysis Today, 2016, 269, 132-139.	4.4	33
50	Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Management, 2016, 47, 164-173.	7.4	36
51	Base-Catalyzed Reactions in Biomass Conversion: Reaction Mechanisms and Catalyst Deactivation. Green Chemistry and Sustainable Technology, 2016, , 87-122.	0.7	1
52	Pre-concentration of nalidixic acid through adsorption–desorption cycles: Adsorbent selection and modeling. Chemical Engineering Journal, 2016, 283, 486-494.	12.7	24
53	Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere, 2015, 136, 174-180.	8.2	88
54	A hydrothermal peroxo method for preparation of highly crystalline silica–titania photocatalysts. Journal of Colloid and Interface Science, 2015, 444, 87-96.	9.4	14

#	Article	IF	CITATIONS
55	Hydrocarbons adsorption on metal trimesate MOFs: Inverse gas chromatography and immersion calorimetry studies. Thermochimica Acta, 2015, 602, 36-42.	2.7	12
56	Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renewable and Sustainable Energy Reviews, 2015, 51, 273-287.	16.4	77
57	Exceptional thermal stability of undoped anatase TiO ₂ photocatalysts prepared by a solvent-exchange method. RSC Advances, 2015, 5, 36634-36641.	3.6	18
58	Role of surface intermediates in the deactivation of Mg Zr mixed oxides in acetone self-condensation: A combined DRIFT and ex situ characterization approach. Journal of Catalysis, 2015, 329, 1-9.	6.2	24
59	Role of the support on the performance and stability of Pt-based catalysts for furfural–acetone adduct hydrodeoxygenation. Catalysis Science and Technology, 2015, 5, 1473-1484.	4.1	24
60	Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere, 2015, 119, S124-S130.	8.2	38
61	A new peroxo-route for the synthesis of Mg–Zr mixed oxides catalysts: Application in the gas phase acetone self-condensation. Applied Catalysis A: General, 2014, 477, 26-33.	4.3	19
62	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	4.4	37
63	Oneâ€pot Aldol Condensation and Hydrodeoxygenation of Biomassâ€derived Carbonyl Compounds for Biodiesel Synthesis. ChemSusChem, 2014, 7, 2816-2820.	6.8	64
64	Consequences of MgO activation procedures on its catalytic performance for acetone self-condensation. Applied Catalysis B: Environmental, 2014, 147, 796-804.	20.2	31
65	Hydrodeoxygenation of acetone–furfural condensation adducts over alumina-supported noble metal catalysts. Applied Catalysis B: Environmental, 2014, 160-161, 436-444.	20.2	54
66	Transformación de biomasa en biocombustibles de segunda generación. Madera Bosques, 2014, 20, 11-24.	0.2	12
67	Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: An inverse gas chromatography study. Journal of Chromatography A, 2013, 1274, 173-180.	3.7	19
68	Consequences of cavity size and palladium addition on the selective hydrogen adsorption in isoreticular metal-organic frameworks. Thermochimica Acta, 2013, 567, 79-84.	2.7	13
69	Preparation of nitrogen-containing carbon nanotubes and study of their performance as basic catalysts. Applied Catalysis A: General, 2013, 458, 155-161.	4.3	39
70	Improvement on the Catalytic Performance of Mg–Zr Mixed Oxides for Furfural–Acetone Aldol Condensation by Supporting on Mesoporous Carbons. ChemSusChem, 2013, 6, 463-473.	6.8	64
71	Gas phase acetone self-condensation over unsupported and supported Mg–Zr mixed-oxides catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 387-395.	20.2	56
72	Improvement of the stability of basic mixed oxides used as catalysts for aldol condensation of bio-derived compounds by palladium addition. Biomass and Bioenergy, 2013, 56, 592-599.	5.7	25

#	Article	IF	CITATIONS
73	Characterisation of Catalysts and Adsorbents by Inverse Gas Chromatography. Springer Series in Materials Science, 2013, , 521-542.	0.6	3
74	Trichloroethylene Hydrodechlorination in Water Using Formic Acid as Hydrogen Source: Selection of Catalyst and Operation Conditions. Environmental Progress and Sustainable Energy, 2013, 32, 1217-1222.	2.3	16
75	Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catalysis Today, 2012, 196, 26-33.	4.4	35
76	Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air. Ecological Indicators, 2012, 18, 126-130.	6.3	24
77	Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 2012, 113-114, 201-211.	20.2	184
78	A kinetic study of CO2 desorption from basic materials: Correlation with adsorption properties. Chemical Engineering Journal, 2011, 175, 341-348.	12.7	13
79	Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites. Catalysis Today, 2011, 164, 436-442.	4.4	163
80	Performance of bifunctional Pd/MxNyO (M=Mg, Ca; N=Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures. Catalysis Today, 2011, 164, 451-456.	4.4	39
81	Hydrotalcite-derived mixed oxides as catalysts for different C–C bond formation reactions from bioorganic materials. Catalysis Today, 2011, 167, 71-76.	4.4	83
82	Consequences of the iron–aluminium exchange on the performance of hydrotalcite-derived mixed oxides for ethanol condensation. Applied Catalysis B: Environmental, 2011, 102, 590-599.	20.2	75
83	Effect of carbonaceous supports on the Pd-catalyzed aqueous-phase trichloroethylene hydrodechlorination. Applied Catalysis B: Environmental, 2011, 104, 415-417.	20.2	33
84	PHYSICO CHEMICAL TREATMENT METHODS FUNDAMENTALS AND DESIGN GUIDELINES. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 1-38.	0.2	1
85	Carbon nanofibre-supported palladium catalysts as model hydrodechlorination catalysts. Journal of Catalysis, 2010, 272, 158-168.	6.2	60
86	Homogeneous Oxidation Reactions of Propanediols at Low Temperatures. ChemSusChem, 2010, 3, 1063-1070.	6.8	35
87	Hydrogen adsorption on Pd-modified carbon nanofibres: Influence of CNF surface chemistry and impregnation procedure. International Journal of Hydrogen Energy, 2010, 35, 4576-4581.	7.1	26
88	High-surface area graphites as supports for hydrodechlorination catalysts: Tuning support surface chemistry for an optimal performance. Applied Catalysis B: Environmental, 2010, 99, 181-190.	20.2	38
89	Performance of carbon nanofibres, high surface area graphites, and activated carbons as supports of Pd-based hydrodechlorination catalysts. Catalysis Today, 2010, 150, 16-21.	4.4	20
90	Transition metal-exchanged LTA zeolites as novel catalysts for methane combustion. Catalysis Today, 2010, 157, 425-431.	4.4	15

#	Article	IF	CITATIONS
91	Adsorption of CO ₂ on Hydrotalcite-Derived Mixed Oxides: Sorption Mechanisms and Consequences for Adsorption Irreversibility. Industrial & Engineering Chemistry Research, 2010, 49, 3663-3671.	3.7	179
92	Inverse gas chromatography as a technique for the characterization of the performance of Mn/Zr mixed oxides as combustion catalysts. Journal of Chromatography A, 2009, 1216, 7873-7881.	3.7	6
93	Combustion of Methane in Lean Mixtures over Bulk Transition-Metal Oxides: Evaluation of the Activity and Self-Deactivation. Energy & Fuels, 2009, 23, 86-93.	5.1	69
94	A New Procedure for the Treatment of Organochlorinated Off-Gases Combining Adsorption and Catalytic Hydrodechlorination. Environmental Science & amp; Technology, 2009, 43, 1999-2004.	10.0	12
95	Modification of the adsorption properties of high surface area graphites by oxygen functional groups. Carbon, 2008, 46, 2096-2106.	10.3	58
96	Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. Journal of Chromatography A, 2008, 1188, 264-273.	3.7	76
97	Preparation of carbon nanofibres supported palladium catalysts for hydrodechlorination reactions. Catalysis Communications, 2008, 9, 2080-2084.	3.3	16
98	Effect of hydrothermal ageing on the performance of Ce-promoted PdO/ZrO2 for methane combustion. Catalysis Communications, 2008, 9, 2291-2296.	3.3	34
99	Enhancement of the CO ₂ Retention Capacity of Y Zeolites by Na and Cs Treatments:  Effect of Adsorption Temperature and Water Treatment. Industrial & Engineering Chemistry Research, 2008, 47, 412-418.	3.7	82
100	Enhancement of the CO2 retention capacity of X zeolites by Na- and Cs-treatments. Chemosphere, 2008, 70, 1375-1382.	8.2	65
101	An IGC Study of the Role of Washing Procedures on the Adsorption Properties of Activated Carbons. Adsorption Science and Technology, 2007, 25, 99-112.	3.2	1
102	Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties. Chemosphere, 2007, 66, 1706-1715.	8.2	55
103	Characterization of nanocarbons (nanotubes and nanofibers) by Inverse Gas Chromatography. Journal of Physics: Conference Series, 2007, 61, 904-908.	0.4	7
104	Determination of solubility parameters and thermodynamic properties in hydrocarbon-solvent systems by gas chromatography. Brazilian Journal of Chemical Engineering, 2007, 24, 293-306.	1.3	8
105	Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. Journal of Colloid and Interface Science, 2007, 305, 7-16.	9.4	148
106	Regeneration of Pd/Al2O3 catalysts used for tetrachloroethylene hydrodechlorination. Reaction Kinetics and Catalysis Letters, 2007, 90, 101-106.	0.6	13
107	Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study. Catalysis Communications, 2006, 7, 945-949.	3.3	41
108	Characterization of ceria–zirconia mixed oxides as catalysts for the combustion of volatile organic compounds using inverse gas chromatography. Journal of Chromatography A, 2006, 1116, 230-239.	3.7	23

#	Article	IF	CITATIONS
109	Combustion of trichloroethylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance. Microporous and Mesoporous Materials, 2006, 91, 161-169.	4.4	47
110	Inverse GC Investigation of the Adsorption of Thiophenic Compounds on Zeolites. Chromatographia, 2006, 64, 207-213.	1.3	1
111	Performance of alumina-supported noble metal catalysts for the combustion of trichloroethene at dry and wet conditions. Applied Catalysis B: Environmental, 2006, 64, 262-271.	20.2	45
112	Influence of catalyst treatments on the adsorption properties of Î ³ -Al2O3 supported Pt, Rh and Ru catalysts. Microporous and Mesoporous Materials, 2005, 77, 245-255.	4.4	21
113	Comparison of adsorption properties of a chemically activated and a steam-activated carbon, using inverse gas chromatography. Microporous and Mesoporous Materials, 2005, 82, 173-181.	4.4	37
114	Evaluation of different zeolites in their parent and protonated forms for the catalytic combustion of hexane and benzene. Microporous and Mesoporous Materials, 2005, 83, 292-300.	4.4	29
115	Evaluation of adsorption properties of zeolites using inverse gas chromatography: comparison with immersion calorimetry. Thermochimica Acta, 2005, 434, 9-14.	2.7	22
116	Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography. Journal of Chromatography A, 2005, 1095, 131-137.	3.7	23
117	Determination of Metal Dispersion and Surface Acidity of a Pd/Al2O3 Catalyst by Gas Chromatography. Chromatographia, 2005, 61, 285-290.	1.3	5
118	Catalytic combustion of hexane over transition metal modified zeolites NaX and CaA. Applied Catalysis B: Environmental, 2005, 56, 313-322.	20.2	55
119	Benzylation of benzene over Fe-modified ZSM-5 zeolites: Correlation between activity and adsorption properties. Applied Catalysis A: General, 2005, 295, 106-115.	4.3	36
120	Enhancement of the activity of CaA zeolites as deep oxidation catalysts through transition metal ion exchange. Studies in Surface Science and Catalysis, 2005, , 1653-1660.	1.5	1
121	Selectivity of Several Liquid Phases for the Separation of Pine Terpenes by Gas Chromatography. Chromatographia, 2004, 60, 573-578.	1.3	5
122	Cyclohexene Reactivity over Palladium Acetate Supported in Liquid Phase. Catalysis Letters, 2004, 96, 169-175.	2.6	4
123	Adsorption properties of a Pd/Î ³ -Al2O3 catalyst using inverse gas chromatography. Microporous and Mesoporous Materials, 2004, 70, 109-118.	4.4	47
124	Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 139-146.	3.7	80
125	Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 161-169.	3.7	23
126	Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 139-146.	3.7	69

#	Article	IF	CITATIONS
127	Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. Journal of Chromatography A, 2004, 1049, 161-169.	3.7	25
128	Economically Disadvantaged Urban Female Students Who Achieve in Schools. Urban Review, 1999, 31, 31-54.	1.6	30