Takaaki Mano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724375/publications.pdf

Version: 2024-02-01

226 papers 4,210 citations

34 h-index 149698 56 g-index

227 all docs

227 docs citations

times ranked

227

2253 citing authors

#	Article	IF	CITATIONS
1	Improvement of structural quality of AlN layers grown on c-plane sapphire substrate by metal–organic vapor phase epitaxy using post-growth annealing with trimethylgallium. AIP Advances, 2022, 12, 015203.	1.3	O
2	Atomic-scale characterization of highly doped Si impurities in GaAs using scanning tunneling microscopy. Applied Surface Science, 2022, 583, 152373.	6.1	0
3	Real-time and space visualization of excitations of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\hat{l}/2</mml:mi><mml:mo>=<td>mo3.æmml:</td><td>:mr&1</td></mml:mo></mml:mrow></mml:math>	mo 3. æmml:	:mr&1
4	Improved power and far-field pattern of surface-emitting quantum cascade lasers with strain compensation to operate at 4.3 \hat{l} /4m. Japanese Journal of Applied Physics, 2022, 61, 052001.	1.5	2
5	Anisotropic expansion of drifting spin helices in GaAs quantum wells. Physical Review B, 2021, 103, .	3.2	6
6	Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials, 2021, 11, 443.	4.1	5
7	Annealing-Induced Structural Evolution of InAs Quantum Dots on InP (111)A Formed by Droplet Epitaxy. Crystal Growth and Design, 2021, 21, 3947-3953.	3.0	3
8	Eigenmode symmetry assignment of triangular-lattice photonic crystal slabs and their Dirac cones materialized by effective degeneracy in the mid-infrared region. Optics Express, 2021, 29, 19486.	3.4	6
9	Design and fabrication of photonic crystal resonators for single-mode and vertical surface emission from strain-compensated quantum cascade lasers operating at 4.32 \hat{l} 4m. Applied Physics Express, 2021, 14, 102003.	2.4	7
10	Patchwork metasurface quantum well photodetectors with broadened photoresponse. Optics Express, 2021, 29, 59.	3.4	5
11	Mid-IR surface-emitting Quantum Cascade Laser with Photonic Crystal. , 2021, , .		0
12	Breaking the interband detectivity limit with metasurface multi-quantum-well infrared photodetectors. Optics Express, 2021, 29, 43598.	3.4	2
13	Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates. Nanomaterials, 2020, 10, 1833.	4.1	4
14	Effectiveness of AlGaAs barrier layers as a redistribution channel of photoexcited carriers on anomalous temperature dependence of photoluminescence properties of GaAs quantum dots. Journal of Applied Physics, 2020, 128, 055701.	2.5	2
15	Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates. Scientific Reports, 2020, 10, 4606.	3.3	27
16	Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature. Nature Communications, 2020, 11, 565.	12.8	40
17	Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55Âμm. Applied Physics Express, 2020, 13, 025002.	2.4	20
18	Direct observation of charge accumulation in quantum well solar cells by cross-sectional Kelvin probe force microscopy. Applied Physics Letters, 2020, 116, .	3.3	2

#	Article	lF	CITATIONS
19	Spin-locked transport in a two-dimensional electron gas. Physical Review B, 2020, 101, .	3.2	5
20	Mid-IR Dirac-cone dispersion relation materialized in SOI photonic crystal slabs. Optics Express, 2020, 28, 4194.	3.4	9
21	Angle-resolved reflection spectra of Dirac cones in triangular-lattice photonic crystal slabs. Optics Express, 2020, 28, 21601.	3.4	7
22	Systematic studies for improving device performance of quantum well infrared stripe photodetectors. Nanophotonics, 2020, 9, 3373-3384.	6.0	10
23	Near-field resonant photon sorting applied: dual-band metasurface quantum well infrared photodetectors for gas sensing. Nanophotonics, 2020, 9, 4775-4784.	6.0	13
24	Surface-emitting Quantum Cascade Laser with Photonic Crystal at 4 μm., 2020,,.		0
25	Metasurface Quantum Well Photodetectors with Broadened Photoresponse Using a Patchwork of Cavities within a Subwavelength Period. , 2020, , .		1
26	Accurate determination of strains at layered materials by selected area electron diffraction mapping. Japanese Journal of Applied Physics, 2019, 58, SIIA03.	1.5	1
27	Current-injection quantum-entangled-pair emitter using droplet epitaxial quantum dots on GaAs(111)A. Applied Physics Letters, 2019, 115, .	3.3	11
28	Double-Sided Nonalloyed Ohmic Contacts to Si-doped GaAs for Plasmoelectronic Devices. ACS Omega, 2019, 4, 7300-7307.	3.5	8
29	Transport of a persistent spin helix drifting transverse to the spin texture. Physical Review B, 2019, 99,	3.2	11
30	Transmission and reflection of charge-density wave packets in a quantum Hall edge controlled by a metal gate. Applied Physics Letters, $2018,112,$	3.3	3
31	Nonlinear optical response of embedded-semiconductor quantum dots covered by plasmonic metasurfaces. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	2
32	Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well. Physical Review B, 2018, 97, .	3.2	17
33	Superlinear Photoluminescence Dynamics in Plasmon–Quantum-Dot Coupling Systems. ACS Photonics, 2018, 5, 897-906.	6.6	6
34	Strain Relaxation in $GaSb/GaAs(111)A$ Heteroepitaxy Using Thin InAs Interlayers. ACS Omega, 2018, 3, 15592-15597.	3.5	4
35	Evidence for a correlated phase of skyrmions observed in real space. Physical Review B, 2018, 98, .	3.2	1
36	Self-assembled Semiconductor Quantum Ring Complexes by Droplet Epitaxy: Growth and Physical Properties. Nanoscience and Technology, 2018, , 187-228.	1.5	1

#	Article	IF	CITATIONS
37	Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field. Applied Physics Letters, 2018, 112, 142103.	3.3	1
38	Dynamical properties and charge accumulation in solar cells with embedded GaSb quantum dots. Japanese Journal of Applied Physics, 2018, 57, 08RF10.	1.5	1
39	Carrier Transfer in Closely Stacked GaAs/AlGaAs Quantum Dots Grown by Using Droplet Epitaxy. Journal of the Korean Physical Society, 2018, 72, 1356-1363.	0.7	0
40	Optically Imaged Striped Domains of Nonequilibrium Electronic and Nuclear Spins in a Fractional Quantum Hall Liquid. Physical Review Letters, 2017, 118, 076802.	7.8	13
41	Effect of off-cut angle of hydrogen-terminated diamond (111) substrate on the quality of AlN towards high-density AlN/diamond (111) interface hole channel. Journal of Applied Physics, 2017, 121, .	2.5	16
42	Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy. Journal of Crystal Growth, 2017, 477, 239-242.	1.5	19
43	Scroll-like Alloyed CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanoplatelets: Facile Synthesis and Detailed Analysis of Tunable Optical Properties. Chemistry of Materials, 2017, 29, 579-586.	6.7	49
44	Optical transitions in GaNAs quantum wells with variable nitrogen content embedded in AlGaAs. AIP Advances, 2016, 6, .	1.3	3
45	Bias voltage dependence of two-step photocurrent in GaAs/AlGaAs quantum well solar cells. Journal of Applied Physics, 2016, 119, .	2.5	3
46	Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy. Applied Physics Letters, 2016, 109, 171902.	3.3	4
47	Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber. Applied Physics Express, 2016, 9, 032801.	2.4	19
48	Hyperfine coupling of hole and nuclear spins in symmetric (111)-grown GaAs quantum dots. Physical Review B, 2016, 94, .	3.2	11
49	Growth of Metamorphic InGaAs on GaAs (111)A: Counteracting Lattice Mismatch by Inserting a Thin InAs Interlayer. Crystal Growth and Design, 2016, 16, 5412-5417.	3.0	15
50	Magnetospectroscopy of excited states in charge-tunable GaAs/AlGaAs [111] quantum dots. Physical Review B, 2016, 93, .	3.2	10
51	Hyperfine-controlled domain-wall motion observed in real space and time. Physical Review B, 2016, 94, .	3.2	4
52	Wavelength extension beyond 1.5 $\hat{A}\mu m$ in symmetric InAs quantum dots grown on InP(111)A using droplet epitaxy. Applied Physics Express, 2016, 9, 101201.	2.4	10
53	Nonlocal biphoton generation in a Werner state from a single semiconductor quantum dot. Physical Review B, 2015, 91, .	3.2	3
54	Precise shape engineering of epitaxial quantum dots by growth kinetics. Physical Review B, 2015, 92, .	3.2	34

#	Article	IF	CITATIONS
55	Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Physical Review B, 2015, 92, .	3.2	33
56	Growth and optical properties of GaSb/GaAs type-II quantum dots with and without wetting layer. Japanese Journal of Applied Physics, 2015, 54, 04DH01.	1.5	10
57	Extremely High- and Low-Density of Ga Droplets on GaAs{111}A,B: Surface-Polarity Dependence. Crystal Growth and Design, 2015, 15, 485-488.	3.0	18
58	Direct visualization of the N impurity state in dilute GaNAs using scanning tunneling microscopy. Nanoscale, 2015, 7, 16773-16780.	5.6	13
59	Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A. Japanese Journal of Applied Physics, 2015, 54, 04DH07.	1.5	13
60	Voltage dependence of two-step photocurrent generation in quantum dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 108-113.	6.2	23
61	Recent developments in droplet epitaxy. , 2014, , .		0
62	Self-assembly of triangular quantum dots on (111)A substrates by droplet epitaxy. , 2014, , .		1
63	Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen $\hat{\Gamma}$ -doping technique. , 2014, , .		0
64	Tight-binding analysis of the electronic states in AlAs with N isoelectronic impurities. Journal of Applied Physics, 2014, 115, 123501.	2.5	2
65	Composition profiling of GaAs/AlGaAs quantum dots grown by droplet epitaxy. Applied Physics Letters, 2014, 105, .	3.3	13
66	Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Physical Review B, 2014, 90, .	3.2	41
67	Growth of GaSb and AlSb quantum dots on high-index GaAs substrates. Applied Physics Express, 2014, 7, 055502.	2.4	8
68	Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nature Communications, 2014, 5, 3268.	12.8	37
69	Emission from a dipole-forbidden energy state in a GaAs quantum-ring induced by dressed photon. Applied Physics A: Materials Science and Processing, 2014, 115, 1-4.	2.3	5
70	GaAs/AlGaAs quantum wells with indirect-gap AlGaAs barriers for solar cell applications. Applied Physics Letters, 2014, 104, .	3.3	3
71	Heteroepitaxy of GaSb on Si(111) and fabrication of HfO2/GaSb metal-oxide-semiconductor capacitors. Applied Physics Letters, 2014, 104, .	3.3	11
72	Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on $InP(111)A$. Applied Physics Letters, 2014, 104, .	3.3	24

#	Article	IF	CITATIONS
73	Charge tuning in [111] grown GaAs droplet quantum dots. Applied Physics Letters, 2014, 105, 082111.	3.3	12
74	Self-Assembled Growth of Ga Droplets on GaAs(001): Role of Surface Reconstructions. Crystal Growth and Design, 2014, 14, 3110-3115.	3.0	10
75	Self-assembled Semiconductor Quantum Ring Complexes by Droplet Epitaxy: Growth and Physical Properties. Nanoscience and Technology, 2014, , 161-196.	1.5	4
76	Growth of GaSb quantum dots on GaAs (111)A. E-Journal of Surface Science and Nanotechnology, 2014, 12, 304-306.	0.4	0
77	Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering. Physical Review B, 2013, 88, .	3.2	116
78	Fabrication of InAs nanoscale rings by droplet epitaxy. Journal of Crystal Growth, 2013, 378, 529-531.	1.5	5
79	Magnetic field induced valence band mixing in [111] grown semiconductor quantum dots. Physical Review B, 2013, 87, .	3.2	24
80	Size-dependent contact angle of Ga droplets on GaAs. Journal of Crystal Growth, 2013, 378, 5-7.	1.5	6
81	Self-assembly of Ga droplets attached to GaAs quantum dots. Journal of Crystal Growth, 2013, 378, 53-56.	1.5	3
82	Growth of GaSb quantum dots on GaAs (311)A. Journal of Crystal Growth, 2013, 378, 475-479.	1.5	7
83	Photo-induced current in n-AlGaAs/GaAs heterojunction channels driven by local illumination at the edge regions of Hall bar. Applied Physics Letters, 2013, 102, 252104.	3.3	2
84	Impacts of ambipolar carrier escape on current-voltage characteristics in a type-I quantum-well solar cell. Applied Physics Letters, 2013, 103, 061118.	3.3	7
85	Postâ€growth annealing of GaSb quantum dots in GaAs formed by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1505-1508.	0.8	3
86	Visible single-photon emission from a nitrogen impurity center in AlAs. Applied Physics Letters, 2013, 102, .	3.3	10
87	Emission from a Dipole-Forbidden Energy State in a GaAs Quantum-Ring Induced by Dressed Photon. , 2013, , .		0
88	Extremely high-density GaAs quantum dots grown by droplet epitaxy. Applied Physics Letters, 2012, 100,	3.3	33
89	Bunched photon statistics of the spectrally diffusive photoluminescence of single self-assembled GaAs quantum dots. Physical Review B, 2012, 86, .	3.2	19
90	Two-Color Photoexcitation in a GaNAs/AlGaAs Quantum Well Solar Cell. Japanese Journal of Applied Physics, 2012, 51, 06FF15.	1.5	3

#	Article	IF	Citations
91	Current–Voltage Characteristics of GaAs/AlGaAs Coupled Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND08.	1.5	3
92	Extension of Absorption Wavelength in GaAs/AlGaAs Quantum Dots with Underlying Quantum Well for Solar Cell Application. Japanese Journal of Applied Physics, 2012, 51, 10ND14.	1.5	0
93	Effects of Sb/As Interdiffusion on Optical Anisotropy of GaSb Quantum Dots in GaAs Grown by Droplet Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 115201.	1.5	0
94	Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy. Journal of Applied Physics, 2012, 112, 063510.	2.5	14
95	Geometrical impact on the optical polarization of droplet epitaxial quantum dots. Physical Review B, 2012, 86, .	3.2	23
96	Anomalous Capacitance–Voltage Characteristics of GaAs/AlGaAs Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND07.	1.5	0
97	Self-Limiting Growth of Hexagonal and Triangular Quantum Dots on (111)A. Crystal Growth and Design, 2012, 12, 1411-1415.	3.0	44
98	Electrical Lasing in GaAs Quantum Dots Grown by Droplet Epitaxy. , 2012, , .		1
99	Two-Color Photoexcitation in a GaNAs/AlGaAs Quantum Well Solar Cell. Japanese Journal of Applied Physics, 2012, 51, 06FF15.	1.5	9
100	Anomalous Capacitance–Voltage Characteristics of GaAs/AlGaAs Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND07.	1.5	3
101	Current–Voltage Characteristics of GaAs/AlGaAs Coupled Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND08.	1.5	5
102	Extension of Absorption Wavelength in GaAs/AlGaAs Quantum Dots with Underlying Quantum Well for Solar Cell Application. Japanese Journal of Applied Physics, 2012, 51, 10ND14.	1.5	2
103	Effects of Sb/As Interdiffusion on Optical Anisotropy of GaSb Quantum Dots in GaAs Grown by Droplet Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 115201.	1.5	4
104	Nitrogen Concentration Dependence on Two-Step Photocurrent Generation in GaNAs/AlGaAs Solar Cells. , 2012, , .		0
105	Anisotropic Diffusion of In Atoms from an In Droplet and Formation of Elliptically Shaped InAs Quantum Dot Clusters on (100) GaAs. Crystal Growth and Design, 2011, 11, 726-728.	3.0	17
106	Two-Step Formation of Gallium Droplets with High Controllability of Size and Density. Crystal Growth and Design, 2011, 11, 4647-4651.	3.0	13
107	Binding Energy of Exciton Complexes in Self-Assembled GaAs Quantum Dots. , 2011, , .		1
108	Dark-Bright Mixing of Interband Transitions in Symmetric Semiconductor Quantum Dots. Physical Review Letters, 2011, 107, 166604.	7.8	41

#	Article	IF	CITATIONS
109	GaAs Quantum Dots with Type-II Band Alignment. AIP Conference Proceedings, 2011, , .	0.4	O
110	Effects of thermal annealing on C-V characteristics of GaAsâ \hat{A} AlAs Schottky diodes with embedded Al particles. , 2011, , .		0
111	Carrier and nuclear spin pumping in strain free GaAs/AlGaAs quantum dots grown by droplet epitaxy. , 2011, , .		1
112	Effects of low-temperature capping on the optical properties of GaAs/AlGaAs quantum wells. Nanoscale Research Letters, 2011, 6, 76.	5.7	8
113	Selfâ€assembled GaAs quantum dots coupled with GaAs wetting layer grown on GaAs (311)A by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 257-259.	0.8	8
114	Growth of GaSb and InSb quantum dots on GaAs (311)A by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 275-277.	0.8	4
115	Photocurrent characteristics in p-i-n diodes with built-in coupled or uncoupled multi-quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 349-351.	0.8	7
116	Lasing in ultra-narrow emission from GaAs quantum dots coupled with a two-dimensional layer. Nanotechnology, 2011, 22, 335201.	2.6	13
117	Optical anisotropy of GaSb type-II nanorods on vicinal (111)B GaAs. Applied Physics Letters, 2011, 99, 231901.	3.3	5
118	Scanning Fabry-Pérot interferometer with largely tuneable free spectral range for high resolution spectroscopy of single quantum dots. Review of Scientific Instruments, 2011, 82, 073103.	1.3	7
119	Structural atomic-scale analysis of GaAs/AlGaAs quantum wires and quantum dots grown by droplet epitaxy on a (311)A substrate. Applied Physics Letters, 2011, 98, 193112.	3.3	14
120	Shape control of quantum dots studied by cross-sectional scanning tunneling microscopy. Journal of Applied Physics, 2011, 109, 102413.	2.5	13
121	Fabrication of GaNAs/AlGaAs Heterostructures with Large Band Offset Using Periodic Growth Interruption. Applied Physics Express, 2011, 4, 125001.	2.4	12
122	Self-Assembly of GaAs Quantum Wires Grown on (311)A Substrates by Droplet Epitaxy. Applied Physics Express, 2011, 4, 055501.	2.4	6
123	Droplet Epitaxy Quantum Ring Structures. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 34-50.	0.5	11
124	Shape Control of QDs Studied by Cross-sectional Scanning Tunneling Microscopy. Journal of the Korean Physical Society, 2011, 58, 1244-1250.	0.7	1
125	Diamagnetic coefficient of excitonic complexes in GaAs/Al0.3Ga0.7As quantum dots. Journal of Physics: Conference Series, 2010, 210, 012012.	0.4	0
126	Fine structure splitting reduction in droplet epitaxy GaAs quantum dots grown on (111)A surface. Journal of Physics: Conference Series, 2010, 245, 012049.	0.4	7

#	Article	IF	Citations
127	Self-Assembly of Symmetric GaAs Quantum Dots on (111)A Substrates: Suppression of Fine-Structure Splitting. Applied Physics Express, 2010, 3, 065203.	2.4	77
128	Magneto-optical properties of excitonic complexes in GaAs self-assembled quantum dots. Physical Review B, 2010, 81 , .	3.2	23
129	Distribution of exciton emission linewidth observed for GaAs quantum dots grown by droplet epitaxy. Journal of Luminescence, 2010, 130, 2390-2393.	3.1	9
130	Poissonian excitonic population of single QDs. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 884-886.	2.7	1
131	Fine structure splitting of quantum dot excitons: Role of geometry and environment. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 881-883.	2.7	10
132	Thermal annealing of GaSb quantum dots in GaAs formed by droplet epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2742-2744.	2.7	2
133	Unstrained GaAs Quantum Dashes Grown on GaAs(001) Substrates by Droplet Epitaxy. Applied Physics Express, 2010, 3, 045502.	2.4	28
134	Morphological control of GaAs quantum dots grown by droplet epitaxy using a thin AlGaAs capping layer. Journal of Applied Physics, 2010, 108, 083505.	2.5	14
135	EFFECTS OF ANTIMONY FLUX ON MORPHOLOGY AND PHOTOLUMINESCENCE SPECTRA OF GaSb QUANTUM DOTS FORMED ON GaAs BY DROPLET EPITAXY. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 819-826.	1.8	6
136	FABRICATION OF A GaAs/AlGaAs LATTICE-MATCHED QUANTUM DOT SOLAR CELL. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 681-686.	1.8	7
137	Energy renormalization of exciton complexes in GaAs quantum dots. Physical Review B, 2010, 82, .	3.2	34
138	Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Applied Physics Letters, 2010, 96, .	3.3	60
139	Formation of highly anisotropic GaAs quantum dots on GaAs(001) substrates. Journal of Physics: Conference Series, 2010, 245, 012075.	0.4	0
140	Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Applied Physics Letters, 2010, 97, .	3.3	70
141	Optical properties of GaSb/GaAs type-ІІ quantum dots grown by droplet epitaxy. Applied Physics Letters, 2009, 94, 081911.	3.3	37
142	Bunching visibility for correlated photons from single GaAs quantum dots. Physical Review B, 2009, 79, .	3.2	25
143	Optical orientation of electron and nuclear spins in strain free GaAs quantum dots grown by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 762-765.	1.5	0
144	Ordering of GaAs quantum dots by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 729-732.	1.5	9

#	Article	IF	Citations
145	Growth of GaSb dots on GaAs(100) by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 733-735.	1.5	16
146	Magneto photoluminescence in droplet epitaxial GaAs quantum rings. Physica Status Solidi (B): Basic Research, 2009, 246, 861-863.	1.5	7
147	Quantum dots to double concentric quantum ring structures transition. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 928-931.	0.8	4
148	Line broadening of excitonic complexes in selfâ€assembled GaAs/AlGaAs single quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 886-889.	0.8	2
149	High resolution spectroscopy of selfâ€assembled single GaAs/AlGaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 890-893.	0.8	1
150	Advanced quantum dot and photonic crystal technologies for integrated nanophotonic circuits. Microelectronics Journal, 2009, 40, 736-740.	2.0	5
151	High-density GaAs/AlGaAs quantum dots formed on GaAs (311)A substrates by droplet epitaxy. Journal of Crystal Growth, 2009, 311, 1828-1831.	1.5	24
152	Spontaneous formation of a cluster of InAs dots along a ring-like zone on GaAs (100) by droplet epitaxy. Journal of Crystal Growth, 2009, 311, 1836-1838.	1.5	5
153	Two different growth modes of GaSb dots on GaAs(100) by droplet epitaxy. Journal of Crystal Growth, 2009, 311, 2255-2257.	1.5	11
154	Photon antibunching in double quantum ring structures. Physical Review B, 2009, 79, .	3.2	44
155	Self-assembly of quantum dots and rings by droplet epitaxy and their optical properties. Journal of Nanophotonics, 2009, 3, 031605.	1.0	23
156	å‰å晶体微è"ä¸GaAsé‡å縹的Purcellæ•̂应. Chinese Optics Letters, 2009, 7, 879.	2.9	1
157	Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field. Chinese Optics Letters, 2009, 7, 882-885.	2.9	2
158	Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology, 2009, 20, 395601.	2.6	65
159	Poissonian statistics of excitonic complexes in quantum dots. Journal of Applied Physics, 2009, 106, .	2.5	42
160	Structural properties of GaAs nanostructures formed by a supply of intense As4 flux in droplet epitaxy. Applied Surface Science, 2008, 254, 7770-7773.	6.1	18
161	Anomalous temperature dependence of the carrier capture time into InAs/GaAs quantum dots grown on a quantum wire array. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1879-1881.	2.7	1
162	Magneto-photoluminescence study in single GaAs/AlGaAs self-assembled quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1982-1984.	2.7	2

#	Article	IF	CITATIONS
163	Fabrication of a complex InAs ring-and-dot structure by droplet epitaxy. Applied Surface Science, 2008, 254, 7777-7780.	6.1	19
164	Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Physical Review B, 2008, 78, .	3.2	38
165	Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures. Journal of Applied Physics, 2008, 104, .	2.5	40
166	Exciton fine structure in strain-free <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>GaAs</mml:mtext><mml:mo>/</mml:mo><mml:msub><mml:mrow><dots: .<="" 2008,="" 78,="" b,="" effects.="" extrinsic="" physical="" review="" td=""><td>ansnal:mte</td><td>xt&Al</td></dots:></mml:mrow></mml:msub></mml:mrow></mml:math>	a nsna l:mte	xt&Al
167	Spectral diffusion and line broadening in single self-assembled GaAsâ^•AlGaAs quantum dot photoluminescence. Applied Physics Letters, 2008, 93, .	3.3	62
168	Carrier dynamics in individual concentric quantum rings: Photoluminescence measurements. Physical Review B, 2008, 77, .	3.2	32
169	Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities. Applied Physics Letters, 2008, 93, 111103.	3.3	18
170	GaAsâ^•AlGaAs quantum dot laser fabricated on GaAs (311)A substrate by droplet epitaxy. Applied Physics Letters, 2008, 93, 203110.	3.3	35
171	Phonon sideband recombination kinetics in single quantum dots. Journal of Applied Physics, 2008, 104,	2.5	10
172	Structure of Nanowires Fabricated by Electron Beam Induced Deposition to Connect Self-Assembled Quantum Structures. Japanese Journal of Applied Physics, 2007, 46, 6277-6281.	1.5	4
173	Deterministic Nanometer-Sized Lead Wiring by Atomic Force Microscopy Lithography. Japanese Journal of Applied Physics, 2007, 46, 3658-3660.	1.5	0
174	High-resolution core-level photoemission study on GaAs(111)B surfaces. Journal of Applied Physics, 2007, 101, 043516.	2.5	11
175	Fabrication of Submicron GaAs/AlAs Double-Barrier Resonant Tunneling Diodes by Wet Etching with In Droplets as Mask. Japanese Journal of Applied Physics, 2007, 46, L994-L996.	1.5	1
176	Formation of InGaAs Quantum Disks Using Droplet Lithography. Japanese Journal of Applied Physics, 2007, 46, L736-L738.	1.5	2
177	Final-state readout of exciton qubits by observing resonantly excited photoluminescence in quantum dots. Applied Physics Letters, 2007, 90, 051909.	3.3	23
178	Laterally Aligned GaAs Quantum Dot Molecules Grown by Droplet Epitaxy. AIP Conference Proceedings, 2007, , .	0.4	0
179	Ring-shaped GaAs quantum dot laser grown by droplet epitaxy: Effects of post-growth annealing on structural and optical properties. Journal of Crystal Growth, 2007, 301-302, 740-743.	1.5	61
180	Self-assembly of laterally aligned GaAs quantum dot pairs. Applied Physics Letters, 2006, 89, 113115.	3.3	110

#	Article	IF	CITATIONS
181	Temperature dependence of the photoluminescence of single GaAs/AlGaAs concentric quantum ring structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3856-3859.	0.8	O
182	Fabrication of Al nanoparticles and their electrical properties studied by capacitance–voltage measurements. Applied Surface Science, 2006, 252, 5408-5410.	6.1	6
183	Carrier capture and relaxation through a continuum background in InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 163-166.	2.7	3
184	Excitonic transitions in semiconductor concentric quantum double rings. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 46-48.	2.7	17
185	Coupled quantum nanostructures formed by droplet epitaxy. Thin Solid Films, 2006, 515, 531-534.	1.8	19
186	Circular dichroism inInAsâ^•GaAsquantum dots: Confinement-induced magnetism. Physical Review B, 2006, 74, .	3.2	3
187	Lasing in GaAsâ^•AlGaAs self-assembled quantum dots. Applied Physics Letters, 2006, 89, 183102.	3.3	50
188	Quantum Ring Observation using Cs-corrected UHV-STEM. Materia Japan, 2006, 45, 854-854.	0.1	0
189	Nanometer-scale GaAs ring structure grown by droplet epitaxy. Journal of Crystal Growth, 2005, 278, 108-112.	1.5	151
190	Bleaching Dynamics In InAs Self-Assembled Quantum Dots. AIP Conference Proceedings, 2005, , .	0.4	1
191	Temperature-Dependent Photoluminescence of Self-Assembled (In,Ga)As Quantum Dots on GaAs (100): Carrier Redistribution through Low-Energy Continuous States. Japanese Journal of Applied Physics, 2005, 44, 6829-6832.	1.5	19
192	Quantum dot decoherence measured by ensemble photoluminescence. Journal of Applied Physics, 2005, 98, 103527.	2.5	6
193	Dichroic reflection of InAsâ^•GaAs quantum dots. Journal of Applied Physics, 2005, 98, 073519.	2.5	4
194	Complex quantum dot arrays formed by combination of self-organized anisotropic strain engineering and step engineering on shallow patterned substrates. Journal of Applied Physics, 2005, 97, 014304.	2.5	28
195	Ground-state and excited-state emissions from self-assembled GaAs quantum rings. , 2005, , .		0
196	Optical transitions in quantum ring complexes. Physical Review B, 2005, 72, .	3.2	204
197	Self-Assembly of Concentric Quantum Double Rings. Nano Letters, 2005, 5, 425-428.	9.1	357
198	Role of the continuum background for carrier relaxation in InAs quantum dots. Physical Review B, 2005, 72, .	3.2	41

#	Article	IF	Citations
199	Self-organized template formation for quantum dot ordering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1912-1916.	2.1	6
200	One-dimensional single (In,Ga)As quantum dot arrays formed by self-organized anisotropic strain engineering. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 568-572.	2.7	3
201	Direct imaging of self-organized anisotropic strain engineering for improved one-dimensional ordering of (In,Ga)As quantum dot arrays. Journal of Applied Physics, 2004, 95, 109-114.	2.5	54
202	Picosecond Time-Resolved Bleaching Dynamics of Self-Assembled Quantum Dots. IEEE Nanotechnology Magazine, 2004, 3, 348-352.	2.0	5
203	Role of In desorption for formation of self-organized (In,Ga)As quantum wires on GaAs(100) during superlattice formation. Journal of Crystal Growth, 2003, 251, 264-268.	1.5	10
204	Self-organized anisotropic strain engineering: a new concept for quantum dot ordering. Proceedings of the IEEE, 2003, 9, 1898-1906.	21.3	19
205	(In,Ga)As Quantum Dot Array Formation by Self-Organized Anisotropic Strain Engineering of an (In,Ga)As/GaAs Quantum Wire Template: Shallow-Pattern Effects. Materials Research Society Symposia Proceedings, 2003, 794, 14.	0.1	0
206	Effect of annealing on formation of self-assembled (In,Ga)As quantum wires on GaAs (100) by molecular beam epitaxy. Journal of Applied Physics, 2002, 92, 4043-4046.	2.5	27
207	Band discontinuity in the GaAs/AlAs interface studied by in situ photoemission spectroscopy. Applied Physics Letters, 2002, 80, 1764-1766.	3.3	1
208	Cross-sectional scanning tunneling microscopy study of InGaAs quantum dots on GaAs(001) grown by heterogeneous droplet epitaxy. Applied Physics Letters, 2002, 80, 4345-4347.	3.3	19
209	Formation of InAs quantum dot arrays on GaAs (100) by self-organized anisotropic strain engineering of a (In,Ga)As superlattice template. Applied Physics Letters, 2002, 81, 1705-1707.	3.3	90
210	Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer. Applied Physics Letters, 2002, 81, 3067-3069.	3.3	70
211	Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate. Journal of the Electrochemical Society, 2002, 149, B321.	2.9	144
212	Characterization of strain distribution in quantum dots by X-ray diffraction. Journal of Crystal Growth, 2002, 234, 197-201.	1.5	21
213	Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1497-1501.	1.6	6
214	Indium segregation in the fabrication of InGaAs concave disks by heterogeneous droplet epitaxy. Journal of Crystal Growth, 2001, 227-228, 1069-1072.	1.5	11
215	Theoretical study of embedded InAs quantum dots in GaAs. Journal of Crystal Growth, 2001, 229, 615-618.	1.5	0
216	Synchrotron radiation photoemission studies of surface reconstruction on GaAs(001). Springer Proceedings in Physics, 2001, , 293-294.	0.2	1

#	Article	IF	CITATIONS
217	Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. Journal of Crystal Growth, 2000, 209, 504-508.	1.5	67
218	Magneto-photoluminescence study of InGaAs quantum dots fabricated by droplet epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 448-451.	2.7	5
219	InAs Quantum Dots Growth by Modified Droplet Epitaxy Using Sulfur Termination. Japanese Journal of Applied Physics, 2000, 39, 4580-4583.	1.5	23
220	Generalized Grazing Incidence-Angle X-Ray Diffraction Studies on InAs Quantum Dots on Si (100) Substrates. Japanese Journal of Applied Physics, 2000, 39, 4483-4485.	1.5	9
221	Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Applied Physics Letters, 2000, 76, 3543-3545.	3.3	64
222	New Self-Organized Growth Method for InGaAs Quantum Dots on GaAs(001) Using Droplet Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L1009-L1011.	1.5	66
223	DIRECT FORMATION OF GaAs AND InGaAs QUANTUM DOTS BY DROPLET EPITAXY., 1999,,.		O
224	InAs nanocrystal growth on Si (100). Applied Surface Science, 1998, 130-132, 760-764.	6.1	39
225	Ordered quantum dot arrays on self-organized strain engineered templates. , 0, , .		0
226	Photon Correlation in GaAs Self-Assembled Quantum Dots. Applied Physics Express, 0, 1, 042001.	2.4	23