John B Wiley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5724079/publications.pdf

Version: 2024-02-01

361413 361022 1,443 72 20 35 citations h-index g-index papers 81 81 81 1562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Characterization of [Fe(Htrz)2(trz)](BF4)] Nanocubes. Molecules, 2022, 27, 1213.	3.8	6
2	Directed assembly of barium titanate nanopeapods <i>via</i> solvothermal processing with a mixed surfactant system. Journal of Experimental Nanoscience, 2021, 16, 265-277.	2.4	1
3	Microwave Synthetic Routes for Shape-Controlled Catalyst Nanoparticles and Nanocomposites. Molecules, 2021, 26, 3647.	3.8	16
4	Synthesis and thermal stability studies of mixed A-site Dion-Jacobson triple-layered perovskites, $A\hat{a} \in ^2$ LaNaNb3O10 ($A\hat{a} \in ^2$ = H, Li, Na, K, Rb, CuCl). Journal of Solid State Chemistry, 2020, 285, 121235	5. ^{2.9}	4
5	Formation of Mixedâ€Metal Ceria Nanopeapod Composites within Scrolled Hexaniobate Nanosheets. ChemNanoMat, 2019, 5, 1373-1380.	2.8	6
6	Room-Temperature Aqueous Suzuki–Miyaura Cross-Coupling Reactions Catalyzed via a Recyclable Palladium@Halloysite Nanocomposite. Organic Letters, 2019, 21, 3471-3475.	4.6	38
7	Rapid microwave synthesis and optical activity of highly crystalline platinum nanocubes. MRS Communications, 2018, 8, 71-78.	1.8	15
8	Microwave-assisted routes for rapid and efficient modification of layered perovskites. Dalton Transactions, 2018, 47, 2917-2924.	3.3	17
9	Rapid Exfoliation and Surface Tailoring of Perovskite Nanosheets via Microwaveâ€Assisted Reactions. ChemNanoMat, 2017, 3, 538-550.	2.8	16
10	Rapid and Controlled In Situ Growth of Noble Metal Nanostructures within Halloysite Clay Nanotubes. Langmuir, 2017, 33, 13051-13059.	3.5	54
11	Formation of molybdate organic-hybrids and exfoliated molybdate nanosheets. FlatChem, 2017, 5, 9-17.	5.6	5
12	Rapid Largeâ€Scale Synthesis of Vanadate Nanoscrolls with Controllable Lengths. ChemNanoMat, 2016, 2, 54-60.	2.8	7
13	From Tetrahedral to Octahedral Iron Coordination: Layer Compression in Topochemically Prepared FeLa2Ti3O10. Inorganic Chemistry, 2016, 55, 11529-11537.	4.0	2
14	Rapid Topochemical Modification of Layered Perovskites via Microwave Reactions. Inorganic Chemistry, 2016, 55, 1604-1612.	4.0	23
15	Synthesis and characterization of the rare-earth Dion–Jacobson layered perovskites, APrNb ₂ O ₇ (A = Rb, Cs and CuCl). Dalton Transactions, 2015, 44, 10654-10660.	3.3	13
16	Particle Placement and Sheet Topological Control in the Fabrication of Ag–Hexaniobate Nanocomposites. Langmuir, 2015, 31, 480-485.	3.5	16
17	Fabrication of thick porous anodized aluminum oxide templates. Journal of Solid State Electrochemistry, 2015, 19, 1447-1452.	2.5	6
18	Thermal stability and high temperature polymorphism of topochemically-prepared Dion–Jacobson triple-layered perovskites. Journal of Alloys and Compounds, 2015, 647, 370-374.	5.5	16

#	Article	IF	CITATIONS
19	Formation of Scrolled Silver Vanadate Nanopeapods by Both Capture and Insertion Strategies. Chemistry of Materials, 2015, 27, 3694-3699.	6.7	12
20	Peapodâ€Type Nanocomposites through the In Situ Growth of Gold Nanoparticles within Preformed Hexaniobate Nanoscrolls. Angewandte Chemie - International Edition, 2014, 53, 4614-4617.	13.8	30
21	Synthesis of New Multiple Layered Dion-Jacobson Perovskites. Materials Research Society Symposia Proceedings, 2014, 1655, 1.	0.1	3
22	Synthesis and thermal stability studies of a series of metastable Dion–Jacobson double-layered neodymium-niobate perovskites. Journal of Solid State Chemistry, 2014, 216, 85-90.	2.9	16
23	Iron oxide nanotubes synthesized via template-based electrodeposition. Nanoscale, 2014, 6, 5289-5295.	5.6	19
24	Topochemical Synthesis of Alkali-Metal Hydroxide Layers within Double- and Triple-Layered Perovskites. Inorganic Chemistry, 2014, 53, 1773-1778.	4.0	11
25	Innenrücktitelbild: Peapod-Type Nanocomposites through the In Situ Growth of Gold Nanoparticles within Preformed Hexaniobate Nanoscrolls (Angew. Chem. 18/2014). Angewandte Chemie, 2014, 126, 4817-4817.	2.0	0
26	Rapid solvothermal fabrication of hexaniobate nanoscrolls. Materials Research Bulletin, 2013, 48, 3236-3241.	5.2	12
27	High-Yield Solvothermal Synthesis of Magnetic Peapod Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets. Chemistry of Materials, 2013, 25, 3902-3909.	6.7	23
28	Fabrication of scrolled magnetic thin film patterns. Journal of Applied Physics, 2012, 111, 07E518.	2.5	3
29	Microstructural and thermal investigations of HfO2 nanoparticles. RSC Advances, 2012, 2, 9207.	3.6	33
30	Novel Approach to Control Diameter of Self-Rolled Magnetic Microtubes by Anodizing Ti Layer. IEEE Magnetics Letters, $2012,3,\ldots$	1.1	2
31	Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites. Materials Research Bulletin, 2012, 47, 1289-1294.	5.2	8
32	Fabrication of Nanopeapods: Scrolling of Niobate Nanosheets for Magnetic Nanoparticle Chain Encapsulation. Journal of the American Chemical Society, 2012, 134, 2450-2452.	13.7	34
33	Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Advances, 2012, 2, 1913.	3.6	60
34	Topochemical Manipulation of Perovskites: Lowâ€Temperature Reaction Strategies for Directing Structure and Properties. Advanced Materials, 2011, 23, 442-460.	21.0	120
35	Synthesis of mild–hard AAO templates for studying magnetic interactions between metal nanowires. Journal of Materials Chemistry, 2010, 20, 9246.	6.7	24

Topotactic route for new layered perovskite oxides containing fluorine: Ln1.2Sr1.8Mn2O7F2 (Ln=Pr,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	lF	Citations
37	Thermal stability of Dion–Jacobson mixed-metal-niobate double-layered perovskites. Materials Research Bulletin, 2009, 44, 1046-1050.	5.2	15
38	Building Alkali-Metal-Halide Layers within a Perovskite Host by Sequential Intercalation: (A2Cl)LaNb2O7 (A = Rb, Cs). Inorganic Chemistry, 2009, 48, 4811-4816.	4.0	13
39	Preparation of free-standing metal wire arrays by in situ assembly. Journal of Materials Chemistry, 2008, 18, 3977.	6.7	9
40	Topochemical Modification of Layered Perovskites. Materials Research Society Symposia Proceedings, 2008, 1148, 1.	0.1	0
41	Metathetical Precursor Route to Molybdenum Disulfide. Inorganic Syntheses, 2007, , 33-37.	0.3	8
42	Construction of a double-layered tetrahedral network within a perovskite host: Two-step route to the alkali-metal-halide layered perovskite, (LixCl)LaNb2O7. Journal of Solid State Chemistry, 2007, 180, 583-588.	2.9	17
43	Structure and properties of mixed valence titanates, (LixVO)La2Ti3O10. Journal of Materials Chemistry, 2006, 16, 186-191.	6.7	4
44	Interaction effects analysis of dense nanowire systems FMR spectrum. , 2006, , .		0
45	Topochemical Strategies for the Formation of Alkali-metal Halide Arrays within Perovskite Hosts. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	1
46	Spin-Singlet Ground State in Two-Dimensional S=1/2 Frustrated Square Lattice: (CuCl)LaNb2O7. Journal of the Physical Society of Japan, 2005, 74, 1702-1705.	1.6	83
47	Colloidal Crystal Wires from Directed Assembly. Materials Research Society Symposia Proceedings, 2005, 872, 1.	0.1	0
48	New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites. Journal of Physics Condensed Matter, 2004, 16, S585-S590.	1.8	10
49	Reductive Intercalation of Vanadyl Layered Perovskites. Materials Research Society Symposia Proceedings, 2004, 848, 40.	0.1	0
50	Synthesis and characterization of the new layered perovskite, Na0.10(VO)0.45LaTiO4·nH2O. Materials Research Bulletin, 2004, 39, 1385-1392.	5.2	9
51	Transition-metal Dion-Jacobson layered perovskites, M0.5LaNb2O7. Materials Research Bulletin, 2004, 39, 2147-2154.	5.2	18
52	Modified templates for directing the topology of wires: preparation of wires with structured tips. Journal of Materials Chemistry, 2004, 14, 1387.	6.7	6
53	Structural, thermal and magnetic characterization of the manganese oxyhalide layered perovskite, (MnCl)LaNb2O7. Journal of Solid State Chemistry, 2003, 175, 88-93.	2.9	23
54	Insertion of a Two-Dimensional Iron-Chloride Network between Perovskite Blocks. Synthesis and Characterization of the Layered Oxyhalide, (FeCl)LaNb2O7. Chemistry of Materials, 2003, 15, 1480-1485.	6.7	32

#	Article	IF	CITATIONS
55	Templated Assembly of Metal-Anion Arrays within Layered Hosts; Synthesis and Characterization of New Transition-Metal Oxyhalide Perovskites. Materials Research Society Symposia Proceedings, 2002, 718, 1.	0.1	1
56	Formation of Metalâ^'Anion Arrays within Layered Perovskite Hosts. Preparation of a Series of New Metastable Transition-Metal Oxyhalides, (MCl)LaNb2O7(M = Cr, Mn, Fe, Co). Inorganic Chemistry, 2002, 41, 3385-3388.	4.0	41
57	New rare-earth double-layered-perovskite oxyfluorides, RbLnTiNbO6F (Ln = La, Pr, Nd). Materials Research Bulletin, 2002, 37, 133-140.	5.2	10
58	Neutron diffraction study of the oxychloride layered perovskite, (CuCl)LaNb2O7. Materials Research Bulletin, 2002, 37, 593-598.	5. 2	18
59	Construction of Copper Halide Networks within Layered Perovskites. Syntheses and Characterization of New Low-Temperature Copper Oxyhalides. Inorganic Chemistry, 2001, 40, 710-714.	4.0	68
60	Magnetic Properties of Co Nanoparticles in an AlMCM41 Mesoporous Host. Materials Research Society Symposia Proceedings, 2001, 676, 3451.	0.1	3
61	Structure and Nanocrystallites of Ni and NiO Three Dimensional Ordered Macromeshes. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	0
62	Electrodeposition of Three-Dimensionally Periodic Metal Meshes and Spheres. Materials Research Society Symposia Proceedings, 2000, 636, 9161.	0.1	0
63	Assembly of Metal-Anion Arrays within Dion-Jacobson-Type Perovskite Hosts. Materials Research Society Symposia Proceedings, 2000, 658, 851.	0.1	1
64	Synthesis and structure of a double-layered perovskite and its hydrate, K2SrTa2O7·mH2O (m = 0, 2). Materials Research Bulletin, 2000, 35, 1737-1742.	5. 2	28
65	Electrodeposited nickel and gold nanoscale metal meshes with potentially interesting photonic properties. Chemical Communications, 2000, , 997-998.	4.1	79
66	A two-step ion exchange route to the new metastable double-layered perovskite, (Rb,Na)1â°'xCax/2LaNb2O7 (x â‰^ 0.9). Materials Research Bulletin, 1999, 34, 271-278.	5. 2	20
67	Improved Synthetic Routes to Layered Na _x CoO ₂ Oxides. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1999, 29, 1199-1207.	1.8	10
68	Assembly of Metalâ^'Anion Arrays within a Perovskite Host. Low-Temperature Synthesis of New Layered Copperâ^'Oxyhalides, (CuX)LaNb2O7, $X = Cl$, Br. Journal of the American Chemical Society, 1999, 121, 10743-10746.	13.7	116
69	Divalent ion exchange of alkaline-earth cations into the triple-layered perovskite RbCa2Nb3O10. Materials Research Bulletin, 1998, 33, 1581-1586.	5.2	16
70	Opening a Perovskite to Valence Manipulation:Â Two-Step Topotactic Route to a New Mixed-Valence Titanate, Na1-x+yCax/2LaTiO4. Journal of the American Chemical Society, 1998, 120, 217-218.	13.7	47
71	A Multistep Topotactic Route to the New Mixed-Valence Titanate, Na2-x+yCax/2La2Ti3O10. Electron Localization Effects in a Triple-Layered Perovskite. Inorganic Chemistry, 1998, 37, 4484-4485.	4.0	26
72	Low-Temperature Multistep Topotactic Routes to New Mixed-Valence Perovskites. Materials Research Society Symposia Proceedings, 1998, 547, 99.	0.1	1