Sofie Goormachtig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/572392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana. Protoplasma, 2022, 259, 277-290.	2.1	5
2	Drops join to make a stream: highâ€ŧhroughput nanoscale cultivation to grasp the lettuce root microbiome. Environmental Microbiology Reports, 2022, 14, 60-69.	2.4	4
3	Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link <i>rac</i> -GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. Plant and Cell Physiology, 2022, 63, 104-119.	3.1	5
4	Stenotrophomonas sp. SRS1 promotes growth ofÂArabidopsisÂand tomato plants under salt stress conditions. Plant and Soil, 2022, 473, 547-571.	3.7	7
5	Flemish soils contain rhizobia partners for Northwestern Europeâ€adapted soybean cultivars. Environmental Microbiology, 2022, 24, 3334-3354.	3.8	6
6	Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. Frontiers in Plant Science, 2022, 13, .	3.6	12
7	<i>MAX2</i> -dependent competence for callus formation and shoot regeneration from <i>Arabidopsis thaliana</i> root explants. Journal of Experimental Botany, 2022, 73, 6272-6291.	4.8	4
8	Interactions between soil compositions and the wheat root microbiome under drought stress: From an in silico to in planta perspective. Computational and Structural Biotechnology Journal, 2021, 19, 4235-4247.	4.1	7
9	Bioassays for the Effects of Strigolactones and Other Small Molecules on Root and Root Hair Development. Methods in Molecular Biology, 2021, 2309, 129-142.	0.9	7
10	<scp><i>Paenibacillus polymyxa</i></scp> , a Jack of all trades. Environmental Microbiology, 2021, 23, 5659-5669.	3.8	47
11	Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7, 481-499.	9.3	247
12	A Phelipanche ramosa KAI2 protein perceives strigolactones and isothiocyanates enzymatically. Plant Communications, 2021, 2, 100166.	7.7	31
13	Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor. Molecular and Cellular Proteomics, 2021, 20, 100040.	3.8	11
14	Daring to be differential: metabarcoding analysis of soil and plant-related microbial communities using amplicon sequence variants and operational taxonomical units. BMC Genomics, 2020, 21, 733.	2.8	58
15	Standardization of Plant Microbiome Studies: Which Proportion of the Microbiota is Really Harvested?. Microorganisms, 2020, 8, 342.	3.6	17
16	Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome, 2020, 8, 54.	11.1	63
17	CYP707As are effectors of karrikin and strigolactone signalling pathways in <i>Arabidopsis thaliana</i> and parasitic plants. Plant, Cell and Environment, 2019, 42, 2612-2626.	5.7	39
18	The <scp>MYB</scp> transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from <i>Medicago truncatula</i> hairy roots. Plant Journal, 2019, 99, 637-654.	5.7	10

Sofie Goormachtig

#	Article	IF	CITATIONS
19	The Plant <scp>PTM</scp> Viewer, a central resource for exploring plant protein modifications. Plant Journal, 2019, 99, 752-762.	5.7	97
20	Strigolactones as Plant Hormones. , 2019, , 47-87.		9
21	The Role of Strigolactones in Plant–Microbe Interactions. , 2019, , 121-142.		11
22	Plant Growth Promotion Driven by a Novel <i>Caulobacter</i> Strain. Molecular Plant-Microbe Interactions, 2019, 32, 1162-1174.	2.6	31
23	Unraveling new molecular players involved in the autoregulation of nodulation in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2019, 70, 1407-1417.	4.8	41
24	Exploring the protein–protein interaction landscape in plants. Plant, Cell and Environment, 2019, 42, 387-409.	5.7	76
25	Design and visualization of secondâ€generation cyanoisoindoleâ€based fluorescent strigolactone analogs. Plant Journal, 2019, 98, 165-180.	5.7	6
26	MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula. Scientific Reports, 2018, 8, 2046.	3.3	9
27	Seed germination in parasitic plants: what insights can we expect from strigolactone research?. Journal of Experimental Botany, 2018, 69, 2265-2280.	4.8	39
28	Quantitative Tandem Affinity Purification, an Effective Tool to Investigate Protein Complex Composition in Plant Hormone Signaling: Strigolactones in the Spotlight. Frontiers in Plant Science, 2018, 9, 528.	3.6	13
29	Strigolactones, karrikins and beyond. Plant, Cell and Environment, 2017, 40, 1691-1703.	5.7	61
30	Strigolactones in the Rhizosphere: Friend or Foe?. Molecular Plant-Microbe Interactions, 2017, 30, 683-690.	2.6	26
31	Assessment of the function and expression pattern of auxin response factor B3 in the model legume plant Medicago truncatula. Turkish Journal of Biology, 2017, 41, 66-76.	0.8	6
32	The Response of the Root Proteome to the Synthetic Strigolactone GR24 in Arabidopsis. Molecular and Cellular Proteomics, 2016, 15, 2744-2755.	3.8	28
33	Isolation of protein complexes from the model legume <i>Medicago truncatula</i> by tandem affinity purification in hairy root cultures. Plant Journal, 2016, 88, 476-489.	5.7	20
34	<i>Streptomyces</i> as a plant's best friend?. FEMS Microbiology Ecology, 2016, 92, fiw119.	2.7	228
35	Diagonal chromatography to study plant protein modifications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 945-951.	2.3	0
36	The Whats, the Wheres and the Hows of strigolactone action in the roots. Planta, 2016, 243, 1327-1337.	3.2	33

SOFIE GOORMACHTIG

#	Article	IF	CITATIONS
37	lt's Time for Some "Site―Seeing: Novel Tools to Monitor the Ubiquitin Landscape in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 6-16.	6.6	84
38	Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of Experimental Botany, 2016, 67, 379-389.	4.8	58
39	Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2015, 66, 5123-5134.	4.8	53
40	Dynamic Changes in ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory Mechanism in the Maize Leaf. Plant Cell, 2015, 27, 1605-1619.	6.6	154
41	Plant hormone signalling through the eye of the mass spectrometer. Proteomics, 2015, 15, 1113-1126.	2.2	13
42	From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. Journal of Experimental Botany, 2015, 66, 137-146.	4.8	97
43	Processes underlying branching differences in fodder crops. Euphytica, 2014, 195, 301-313.	1.2	9
44	Role of <i><scp>LONELY GUY</scp></i> genes in indeterminate nodulation on <i>Medicago truncatula</i> . New Phytologist, 2014, 202, 582-593.	7.3	81
45	Combining linkage and association mapping identifies <i>RECEPTOR-LIKE PROTEIN KINASE1</i> as an essential <i>Arabidopsis</i> shoot regeneration gene. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8305-8310.	7.1	63
46	New Strigolactone Analogs as Plant Hormones with Low Activities in the Rhizosphere. Molecular Plant, 2014, 7, 675-690.	8.3	84
47	A COFRADIC Protocol To Study Protein Ubiquitination. Journal of Proteome Research, 2014, 13, 3107-3113.	3.7	57
48	Strigolactones fine-tune the root system. Planta, 2013, 238, 615-626.	3.2	55
49	A Fluorescent Alternative to the Synthetic Strigolactone GR24. Molecular Plant, 2013, 6, 100-112.	8.3	50
50	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	4.8	191
51	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	4.8	286
52	Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 2012, 17, 349-359.	8.8	467
53	<i>WUSCHEL-RELATED HOMEOBOX5</i> Gene Expression and Interaction of CLE Peptides with Components of the Systemic Control Add Two Pieces to the Puzzle of Autoregulation of Nodulation Â. Plant Physiology, 2012, 158, 1329-1341.	4.8	96
54	Never too many? How legumes control nodule numbers. Plant, Cell and Environment, 2012, 35, 245-258.	5.7	131

Sofie Goormachtig

#	Article	IF	CITATIONS
55	Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant Journal, 2012, 70, 367-376.	5.7	115
56	Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria. Current Genomics, 2011, 12, 147-152.	1.6	18
57	Transcriptional and postâ€transcriptional regulation of a NAC1 transcription factor in <i>Medicago truncatula</i> roots. New Phytologist, 2011, 191, 647-661.	7.3	47
58	Identification of putative CLE peptide receptors involved in determinate nodulation on soybean. Plant Signaling and Behavior, 2011, 6, 1019-1023.	2.4	2
59	Search for nodulation-related CLE genes in the genome of Glycine max. Journal of Experimental Botany, 2011, 62, 2571-2583.	4.8	30
60	Comparison of Developmental and Stress-Induced Nodule Senescence in <i>Medicago truncatula</i> . Plant Physiology, 2010, 152, 1574-1584.	4.8	102
61	CLE Peptides Control <i>Medicago truncatula</i> Nodulation Locally and Systemically Â. Plant Physiology, 2010, 153, 222-237.	4.8	293
62	Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of <i>Sesbania rostrata</i> Â Â. Plant Cell, 2009, 21, 1526-1540.	6.6	75
63	A Symbiotic Plant Peroxidase Involved in Bacterial Invasion of the Tropical Legume Sesbania rostrata Â. Plant Physiology, 2007, 144, 717-727.	4.8	33
64	Comparative Transcriptome Analysis Reveals Common and Specific Tags for Root Hair and Crack-Entry Invasion in Sesbania rostrata Â. Plant Physiology, 2007, 144, 1878-1889.	4.8	18
65	Signaling and Gene Expression for Water-Tolerant Legume Nodulation. Critical Reviews in Plant Sciences, 2006, 25, 367-380.	5.7	22
66	Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula Â. Plant Physiology, 2006, 141, 711-720.	4.8	214
67	Gibberellins Are Involved in Nodulation of Sesbania rostrata Â. Plant Physiology, 2005, 139, 1366-1379.	4.8	79
68	SrSymRK, a plant receptor essential for symbiosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10369-10374.	7.1	113
69	Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6303-6308.	7.1	121
70	Nodulation-enhanced sequences from the water stress-tolerant tropical legume Sesbania rostrata. Plant Science, 2004, 167, 207-216.	3.6	10
71	infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends in Plant Science, 2004, 9, 518-522.	8.8	95
72	Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Science, 2003, 165, 1281-1288.	3.6	29

SOFIE GOORMACHTIG

#	Article	IF	CITATIONS
73	Nodule-enhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata. Journal of Experimental Botany, 2003, 55, 89-97.	4.8	18
74	Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11789-11794.	7.1	177
75	Patterns of Pectin Methylesterase Transcripts in Developing Stem Nodules of Sesbania rostrata. Molecular Plant-Microbe Interactions, 2002, 15, 164-168.	2.6	25
76	Srchi24, A Chitinase Homolog Lacking an Essential Glutamic Acid Residue for Hydrolytic Activity, Is Induced during Nodule Development on Sesbania rostrata. Plant Physiology, 2001, 127, 78-89.	4.8	21
77	Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legume Sesbania rostrata. Planta, 1999, 209, 45-52.	3.2	27
78	Patterns of ENOD40 gene expression in stem-borne nodules of Sesbania rostrata. Plant Molecular Biology, 1998, 37, 67-76.	3.9	39
79	Srchi13, a Novel Early Nodulin from Sesbania rostrata, Is Related to Acidic Class III Chitinases. Plant Cell, 1998, 10, 905-915.	6.6	86
80	The Early Nodulin Gene ENOD2 Shows Different Expression Patterns During Sesbania rostrata Stem Nodule Development. Molecular Plant-Microbe Interactions, 1998, 11, 237-241.	2.6	8
81	The Symbiotic Interaction between Azorhizobium caulinodans and Sesbania rostrata. Sub-Cellular Biochemistry, 1998, 29, 117-164.	2.4	15
82	Expression of Cell Cycle Genes During Sesbania rostrata Stem Nodule Development. Molecular Plant-Microbe Interactions, 1997, 10, 316-325.	2.6	53
83	Use of Differential Display to Identify NovelSesbania rostrataGenes Enhanced byAzorhizobium cauiinodansInfection, Molecular Plant-Microbe Interactions, 1995, 8, 816.	2.6	74