
## **R** Scott Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5722875/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evaluation and optimization of PolyJet 3D-printed materials for cell culture studies. Analytical and<br>Bioanalytical Chemistry, 2022, 414, 3329-3339.                                                                            | 1.9 | 11        |
| 2  | PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip<br>Electrophoresis. ACS Omega, 2022, 7, 13362-13370.                                                                                     | 1.6 | 4         |
| 3  | 3D printed devices with integrated collagen scaffolds for cell culture studies including<br>transepithelial/transendothelial electrical resistance (TEER) measurements. Analytica Chimica Acta,<br>2022, 1221, 340166.            | 2.6 | 1         |
| 4  | A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood–Brain Barrier Model. Small<br>Methods, 2021, 5, 2100592.                                                                                                   | 4.6 | 9         |
| 5  | Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis.<br>Analytical Methods, 2021, 13, 5017-5024.                                                                                        | 1.3 | 10        |
| 6  | 3D-printed microfluidic device with in-line amperometric detection that also enables multi-modal detection. Analytical Methods, 2020, 12, 2046-2051.                                                                              | 1.3 | 8         |
| 7  | Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices. Analyst,<br>The, 2020, 145, 3274-3282.                                                                                                 | 1.7 | 15        |
| 8  | Review of 3D cell culture with analysis in microfluidic systems. Analytical Methods, 2019, 11, 4220-4232.                                                                                                                         | 1.3 | 86        |
| 9  | Integrating 3D cell culture of PC12 cells with microchip-based electrochemical detection. Analytical Methods, 2019, 11, 1064-1072.                                                                                                | 1.3 | 16        |
| 10 | Microfluidic Device Using a Gold Pillar Array and Integrated Electrodes for Onâ€chip Endothelial Cell<br>Immobilization, Direct RBC Contact, and Amperometric Detection of Nitric Oxide. Electroanalysis,<br>2019, 31, 1409-1415. | 1.5 | 6         |
| 11 | PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports. Analytical Chemistry, 2019, 91, 6910-6917.                                                                                                       | 3.2 | 67        |
| 12 | Insert-based microfluidics for 3D cell culture with analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 3025-3035.                                                                                                       | 1.9 | 40        |
| 13 | Enhanced microchip electrophoresis separations combined with electrochemical detection utilizing a capillary embedded in polystyrene. Analytical Methods, 2018, 10, 37-45.                                                        | 1.3 | 6         |
| 14 | The Use of a 3Dâ€printed Microfluidic Device and Pressure Mobilization for Integrating Capillary Electrophoresis with Electrochemical Detection. Electroanalysis, 2018, 30, 2241-2249.                                            | 1.5 | 13        |
| 15 | Use of 3D printing and modular microfluidics to integrate cell culture, injections and electrochemical analysis. Analytical Methods, 2018, 10, 3364-3374.                                                                         | 1.3 | 28        |
| 16 | In celebration of the 60th birthday of 2 microfluidics pioneers: Professor Susan Lunte and Professor<br>James Landers. Analytical Methods, 2018, 10, 3433-3435.                                                                   | 1.3 | 1         |
| 17 | Microchip-based 3D-cell culture using polymer nanofibers generated by solution blow spinning.<br>Analytical Methods, 2017, 9, 3274-3283.                                                                                          | 1.3 | 20        |
| 18 | A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size. Electrospinning, 2017, 2, 46-61.                                                                                           | 1.6 | 54        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices. Analyst, The, 2016, 141, 5311-5320.                                                                     | 1.7 | 36        |
| 20 | Simultaneous analysis of vascular norepinephrine and ATP release using an integrated microfluidic system. Journal of Neuroscience Methods, 2016, 266, 68-77.                                                                        | 1.3 | 7         |
| 21 | Integrated electrodes and electrospray emitter for polymer microfluidic nanospray–MS interface.<br>Analytical Methods, 2016, 8, 5152-5157.                                                                                          | 1.3 | 4         |
| 22 | 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Analytical Methods, 2016, 8, 6005-6012.                                                                                                     | 1.3 | 212       |
| 23 | Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device. Analyst, The, 2016, 141, 862-869.                                                                                                          | 1.7 | 48        |
| 24 | Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters. Journal of Physical Chemistry C, 2016, 120, 20624-20633.                                                    | 1.5 | 27        |
| 25 | Sheath-Flow Microfluidic Approach for Combined Surface Enhanced Raman Scattering and Electrochemical Detection. Analytical Chemistry, 2015, 87, 4347-4355.                                                                          | 3.2 | 43        |
| 26 | Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Analytical Methods, 2015, 7, 2968-2976.                                                                             | 1.3 | 8         |
| 27 | Periodic and complex waveform current oscillations of copper electrodissolution in phosphoric acid<br>in an epoxy-based microchip flow cell. Journal of Solid State Electrochemistry, 2015, 19, 3241-3251.                          | 1.2 | 5         |
| 28 | Integrated hybrid polystyrene–polydimethylsiloxane device for monitoring cellular release with<br>microchip electrophoresis and electrochemical detection. Analytical Methods, 2015, 7, 884-893.                                    | 1.3 | 22        |
| 29 | Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release.<br>Analyst, The, 2014, 139, 5686-5694.                                                                                        | 1.7 | 11        |
| 30 | 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab on A Chip, 2014, 14, 2023-2032.                                                                                                              | 3.1 | 248       |
| 31 | Microchip-based electrochemical detection for monitoring cellular systems. Analytical and<br>Bioanalytical Chemistry, 2013, 405, 3013-3020.                                                                                         | 1.9 | 25        |
| 32 | Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst, The, 2013, 138, 129-136.                                                                            | 1.7 | 33        |
| 33 | Encapsulation of fluidic tubing and microelectrodes in microfluidic devices: integrating off-chip process and coupling conventional capillary electrophoresis with electrochemical detection.<br>Analytical Methods, 2013, 5, 4220. | 1.3 | 11        |
| 34 | Integration of multiple components in polystyrene-based microfluidic devices part II: cellular analysis.<br>Analyst, The, 2013, 138, 137-143.                                                                                       | 1.7 | 22        |
| 35 | A 3D Printed Fluidic Device that Enables Integrated Features. Analytical Chemistry, 2013, 85, 5622-5626.                                                                                                                            | 3.2 | 199       |
| 36 | Encapsulated electrodes for microchip devices: Microarrays and platinized electrodes for signal enhancement. Electrophoresis, 2013, 34, 2092-2100.                                                                                  | 1.3 | 24        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Use of microchip electrophoresis and a palladium/mercury amalgam electrode for the separation and detection of thiols. Analytical Methods, 2011, 3, 1072.                                                                          | 1.3 | 12        |
| 38 | Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating<br>Segmented Flow with Microchip Electrophoresis and Electrochemical Detection. Analytical<br>Chemistry, 2011, 83, 5996-6003. | 3.2 | 26        |
| 39 | Microfluidic Transendothelial Electrical Resistance Measurement Device that Enables Blood Flow and Postgrowth Experiments. Analytical Chemistry, 2011, 83, 4296-4301.                                                              | 3.2 | 49        |
| 40 | Electrochemical oscillations of nickel electrodissolution in an epoxy-based microchip flow cell.<br>Journal of Electroanalytical Chemistry, 2011, 659, 92-100.                                                                     | 1.9 | 24        |
| 41 | Use of epoxyâ€embedded electrodes to integrate electrochemical detection with microchipâ€based<br>analysis systems. Electrophoresis, 2011, 32, 822-831.                                                                            | 1.3 | 27        |
| 42 | Integration of microchip electrophoresis with electrochemical detection using an epoxyâ€based molding method to embed multiple electrode materials. Electrophoresis, 2011, 32, 3121-3128.                                          | 1.3 | 23        |
| 43 | Use of a Carbonâ€Ink Microelectrode Array for Signal Enhancement in Microchip Electrophoresis with<br>Electrochemical Detection. Electroanalysis, 2010, 22, 2141-2146.                                                             | 1.5 | 12        |
| 44 | Integration of on hip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection. Electrophoresis, 2010, 31, 2534-2540.                                                                   | 1.3 | 48        |
| 45 | Use of recordable compact discs to fabricate electrodes for microchip-based analysis systems.<br>Analytical Methods, 2010, 2, 811.                                                                                                 | 1.3 | 17        |
| 46 | Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection. Electrophoresis, 2009, 30, 3347-3354.                                                                   | 1.3 | 19        |
| 47 | Synchronized current oscillations of formic acid electro-oxidation in a microchip-based dual-electrode flow cell. Electrochimica Acta, 2009, 55, 395-403.                                                                          | 2.6 | 19        |
| 48 | A microchip-based endothelium mimic utilizing open reservoirs for cell immobilization and integrated carbon ink microelectrodes for detection. Analytical and Bioanalytical Chemistry, 2009, 393, 599-605.                         | 1.9 | 22        |
| 49 | Selective detection of endogenous thiols using microchip-based flow analysis and mercury/gold amalgam microelectrodes. Analyst, The, 2009, 134, 372-379.                                                                           | 1.7 | 21        |
| 50 | Microchip-based integration of cell immobilization, electrophoresis, post-column derivatization, and<br>fluorescence detection for monitoring the release of dopamine from PC 12 cells. Analyst, The, 2008,<br>133, 1358.          | 1.7 | 25        |
| 51 | Integration of Microdialysis Sampling and Microchip Electrophoresis with Electrochemical Detection. Analytical Chemistry, 2008, 80, 9257-9264.                                                                                     | 3.2 | 70        |
| 52 | Chemical Imaging of Pharmaceutical Materials: Fabrication of Micropatterned Resolution Targets.<br>Analytical Chemistry, 2008, 80, 5706-5712.                                                                                      | 3.2 | 8         |
| 53 | Coupling Microdialysis Sampling to Microchip Electrophoresis in a Reversibly Sealed Device. Journal of the Association for Laboratory Automation, 2007, 12, 296-302.                                                               | 2.8 | 8         |
| 54 | Development of an on-chip injector for microchip-based flow analyses using laminar flow. Lab on A<br>Chip, 2007, 7, 1589.                                                                                                          | 3.1 | 13        |

4

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers. Analyst, The, 2007, 132, 1246.                                   | 1.7 | 4         |
| 56 | Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab on A Chip, 2007, 7, 1256.                                                                                        | 3.1 | 59        |
| 57 | Integration of continuous-flow sampling with microchip electrophoresis using<br>poly(dimethylsiloxane)-based valves in a reversibly sealed device. Electrophoresis, 2007, 28, 2478-2488.                                   | 1.3 | 28        |
| 58 | Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment. Analyst, The, 2006, 131, 1197.                                                                            | 1.7 | 49        |
| 59 | Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine. Analyst, The, 2006, 131, 202-207.                                                                      | 1.7 | 33        |
| 60 | Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst, The, 2006, 131, 930.                                                                            | 1.7 | 40        |
| 61 | Design and Characterization of Poly(dimethylsiloxane)-Based Valves for Interfacing Continuous-Flow<br>Sampling to Microchip Electrophoresis. Analytical Chemistry, 2006, 78, 1042-1051.                                    | 3.2 | 58        |
| 62 | Monitoring erythrocytes in a microchip channel that narrows uniformly: Towards an improved microfluidic-based mimic of the microcirculation. Journal of Chromatography A, 2006, 1111, 220-227.                             | 1.8 | 18        |
| 63 | Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis. Electrophoresis, 2006, 27, 5032-5042.                                                        | 1.3 | 40        |
| 64 | Interfacing Amperometric Detection With Microchip Capillary Electrophoresis. , 2006, 339, 85-112.                                                                                                                          |     | 13        |
| 65 | Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry. Electrophoresis, 2005, 26, 202-210.                                    | 1.3 | 43        |
| 66 | Microchip-based ethanol/oxygen biofuel cell. Lab on A Chip, 2005, 5, 218.                                                                                                                                                  | 3.1 | 156       |
| 67 | Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using<br>CO2 laser ablation. Analyst, The, 2005, 130, 924.                                                                   | 1.7 | 22        |
| 68 | Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst, The, 2004, 129, 995.                                                               | 1.7 | 61        |
| 69 | Deformation-Induced Release of ATP from Erythrocytes in a Poly(dimethylsiloxane)-Based Microchip with Channels That Mimic Resistance Vessels. Analytical Chemistry, 2004, 76, 4849-4855.                                   | 3.2 | 64        |
| 70 | On-Line Coupling of Microdialysis Sampling with Microchip-Based Capillary Electrophoresis.<br>Analytical Chemistry, 2004, 76, 6440-6447.                                                                                   | 3.2 | 73        |
| 71 | Development of a Microfabricated Palladium Decoupler/Electrochemical Detector for Microchip<br>Capillary Electrophoresis Using a Hybrid Glass/Poly(dimethylsiloxane) Device. Analytical Chemistry,<br>2004, 76, 2482-2491. | 3.2 | 134       |
| 72 | Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst, The, 2004, 129, 400.                                                                          | 1.7 | 60        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Indirect Measurement of Nitric Oxide Production by Monitoring Nitrate and Nitrite Using Microchip Electrophoresis with Electrochemical Detection. Analytical Chemistry, 2002, 74, 6370-6377. | 3.2 | 92        |
| 74 | In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically<br>Isolated Potentiostat. Analytical Chemistry, 2002, 74, 1136-1143.                      | 3.2 | 180       |
| 75 | Recent developments in amperometric detection for microchip capillary electrophoresis.<br>Electrophoresis, 2002, 23, 3667-3677.                                                              | 1.3 | 157       |
| 76 | Ultrahigh Sensitivity Analysis of Amino Acids and Peptides by Capillary Liquid Chromatography with Electrochemical Detection. , 2002, , 52-82.                                               |     | 0         |
| 77 | Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst, The, 2001, 126, 277-280.                                                     | 1.7 | 120       |
| 78 | Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis, 2001, 22, 242-248.                                   | 1.3 | 137       |
| 79 | Microchip capillary electrophoresis/ electrochemistry. Electrophoresis, 2001, 22, 2526-2536.                                                                                                 | 1.3 | 239       |
| 80 | Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary<br>Electrophoresis Microchips. Analytical Chemistry, 2000, 72, 3196-3202.                           | 3.2 | 312       |
| 81 | Microchip capillary electrophoresis/ electrochemistry. , 0, .                                                                                                                                |     | 1         |