
James Millen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5722010/publications.pdf Version: 2024-02-01

IAMES MILLEN

#	Article	IF	CITATIONS
1	An odd couple. Nature Physics, 2021, 17, 167-168.	16.7	Ο
2	Direct and Clean Loading of Nanoparticles into Optical Traps at Millibar Pressures. Photonics, 2021, 8, 458.	2.0	9
3	Optomechanics with levitated particles. Reports on Progress in Physics, 2020, 83, 026401.	20.1	155
4	Quantum electromechanics with levitated nanoparticles. Npj Quantum Information, 2020, 6, .	6.7	22
5	Quantum experiments with microscale particles. Contemporary Physics, 2020, 61, 155-168.	1.8	33
6	Quantum sensing with nanoparticles for gravimetry: when bigger is better. Advanced Optical Technologies, 2020, 9, 227-239.	1.7	30
7	Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles. Quantum Science and Technology, 2019, 4, 024003.	5.8	35
8	Silicon microcavity arrays with open access and a finesse of half a million. Light: Science and Applications, 2019, 8, 37.	16.6	40
9	Single Particle Thermodynamics with Levitated Nanoparticles. Fundamental Theories of Physics, 2018, , 853-885.	0.3	5
10	Probing macroscopic quantum superpositions with nanorotors. New Journal of Physics, 2018, 20, 122001.	2.9	66
11	Levitated Nanoparticles for Microscopic Thermodynamics—A Review. Entropy, 2018, 20, 326.	2.2	65
12	Optically driven ultra-stable nanomechanical rotor. Nature Communications, 2017, 8, 1670.	12.8	83
13	Squeezed Environment Boosts Engine Performance. Physics Magazine, 2017, 10, .	0.1	0
14	Nanoparticle detection in an open-access silicon microcavity. Applied Physics Letters, 2017, 111, .	3.3	18
15	Full rotational control of levitated silicon nanorods. Optica, 2017, 4, 356.	9.3	105
16	Tutorial on optomechanics (Conference Presentation). , 2017, , .		0
17	Cooling the mechanical motion of a tapered optical fiber and a microsphere-cantilever using whispering gallery modes. Proceedings of SPIE, 2016, , .	0.8	0
18	Cooling and manipulation of nanoparticles in high vacuum. Proceedings of SPIE, 2016, , .	0.8	6

JAMES MILLEN

#	Article	IF	CITATIONS
19	Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances. Optics Express, 2016, 24, 1392.	3.4	21
20	Nonlinear dynamics and cavity cooling of levitated nanoparticles. Proceedings of SPIE, 2016, , .	0.8	3
21	Making space for nonlocality. Physics World, 2016, 29, 38-39.	0.0	0
22	Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. Physical Review Letters, 2016, 117, 173602.	7.8	119
23	Perspective on quantum thermodynamics. New Journal of Physics, 2016, 18, 011002.	2.9	143
24	The rise of the quantum machines. Physics World, 2016, 29, 23-26.	0.0	9
25	Cavity Cooling a Single Charged Levitated Nanosphere. Physical Review Letters, 2015, 114, 123602.	7.8	228
26	Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements. New Journal of Physics, 2015, 17, 073019.	2.9	31
27	Cooling the centre-of-mass motion of a silica microsphere. , 2014, , .		3
28	Cavity cooling a trapped nanosphere in vacuum. Proceedings of SPIE, 2014, , .	0.8	0
29	Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotechnology, 2014, 9, 425-429.	31.5	223
30	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	2.9	45
31	Optomechanical cooling of levitated spheres with doubly resonant fields. Physical Review A, 2012, 85, .	2.5	40
32	Cooling optically trapped particles. Proceedings of SPIE, 2012, , .	0.8	1
33	Many-body physics with alkaline-earth Rydberg lattices. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 184010.	1.5	84
34	Spectroscopy of a cold strontium Rydberg gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 184001.	1.5	28
35	Modulation-free pump-probe spectroscopy of strontium atoms. European Physical Journal D, 2010, 57, 151-154.	1.3	24
36	Two-Electron Excitation of an Interacting Cold Rydberg Gas. Physical Review Letters, 2010, 105, 213004.	7.8	48

#	Article	IF	CITATIONS
37	A vapor cell based on dispensers for laser spectroscopy. Review of Scientific Instruments, 2009, 80, 013101.	1.3	19
38	Spectroscopy of strontium Rydberg states using electromagnetically induced transparency. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, F319-F325.	1.5	54