
Juan Luis Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5721293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic photovoltaics: a chemical approach. Chemical Communications, 2010, 46, 4853.	4.1	353
2	The nano-forms of carbon. Journal of Materials Chemistry, 2008, 18, 1417.	6.7	234
3	Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters, 2004, 85, 5081-5083.	3.3	206
4	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	13.7	194
5	Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 5164-5169.	13.7	188
6	Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 2017, 488, 373-389.	9.4	163
7	Microwave-assisted sidewall functionalization of single-wall carbon nanotubes by Diels–Alder cycloaddition. Chemical Communications, 2004, , 1734-1735.	4.1	149
8	Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube. Journal of Physical Chemistry B, 2004, 108, 12691-12697.	2.6	117
9	Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 2015, 8, 3012-3028.	6.8	109
10	Understanding the Outstanding Power Conversion Efficiency of Perovskiteâ€Based Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9757-9759.	13.8	108
11	Correlation of Delocalization Indices and Currentâ€Density Maps in Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2008, 14, 3093-3099.	3.3	100
12	Fullerenes: the stars of photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2480-2493.	4.9	99
13	Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. Synthetic Metals, 2005, 154, 53-56.	3.9	90
14	Modified Fullerenes for Efficient Electron Transport Layerâ€Free Perovskite/Fullerene Blendâ€Based Solar Cells. ChemSusChem, 2017, 10, 2023-2029.	6.8	79
15	Carbon Nanoparticles in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702719.	19.5	74
16	A "Cyanineâ^'Cyanine―Salt Exhibiting Photovoltaic Properties. Organic Letters, 2009, 11, 4806-4809.	4.6	70
17	Fullerene Dimers (C ₆₀ /C ₇₀) for Energy Harvesting. Chemistry - A European Journal, 2009, 15, 13474-13482.	3.3	65
18	Influence of nanoscale phase separation on geminate versus bimolecular recombination in P3HT:fullerene blend films. Energy and Environmental Science, 2010, 3, 971.	30.8	61

#	Article	IF	CITATIONS
19	The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotube. Carbon, 2007, 45, 2250-2252.	10.3	60
20	Electron Transport Layerâ€Free Solar Cells Based on Perovskite–Fullerene Blend Films with Enhanced Performance and Stability. ChemSusChem, 2016, 9, 2679-2685.	6.8	60
21	Pyrazolinofullerenes: a less known type of highly versatile fullerene derivatives. Chemical Society Reviews, 2011, 40, 5232.	38.1	57
22	Poly(ethylene glycol)–[60]Fullereneâ€Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis. ChemSusChem, 2018, 11, 1032-1039.	6.8	57
23	Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electronâ€Selective Contact. ChemSusChem, 2016, 9, 1263-1270.	6.8	54
24	Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chemical Physics Letters, 2004, 386, 342-345.	2.6	51
25	Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. Macromolecules, 2019, 52, 2243-2254.	4.8	50
26	Liquid-Crystalline [60]Fullerene-TTF Dyads. Organic Letters, 2005, 7, 383-386.	4.6	49
27	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer. Journal of Organic Chemistry, 2004, 69, 2661-2668.	3.2	48
28	Synthesis and properties of pyrazolino[60]fullerene-donor systems. Tetrahedron, 2002, 58, 5821-5826.	1.9	47
29	On the Thermal Stability of [60]Fullerene Cycloadducts:  Retro-Cycloaddition Reaction of 2-Pyrazolino[4,5:1,2][60]fullerenes. Journal of Organic Chemistry, 2008, 73, 3184-3188.	3.2	46
30	Supramolecular click chemistry for the self-assembly of a stable Zn(ii)–porphyrin–C60 conjugate. Chemical Communications, 2005, , 5736.	4.1	45
31	Tuning the Electronic Properties of Nonplanar exTTF-Based Push–Pull Chromophores by Aryl Substitution. Journal of Organic Chemistry, 2012, 77, 10707-10717.	3.2	44
32	Organic Polymers as Additives in Perovskite Solar Cells. Macromolecules, 2021, 54, 5451-5463.	4.8	42
33	Donorâ€i€â€Acceptors Containing the 10â€(1,3â€Dithiolâ€2â€ylidene)anthracene Unit for Dyeâ€Sensitized Sola Chemistry - A European Journal, 2012, 18, 11621-11629.	r Cells.	40
34	Efficient light harvesting anionic heptamethine cyanine–[60] and [70]fullerene hybrids. Energy and Environmental Science, 2011, 4, 679.	30.8	38
35	Subphthalocyanine-polymethine cyanine conjugate: an all organic panchromatic light harvester that reveals charge transfer. Journal of Materials Chemistry, 2011, 21, 15914.	6.7	37
36	Physicochemical Phenomena and Application in Solar Cells of Perovskite:Fullerene Films. Journal of Physical Chemistry Letters, 2018, 9, 2893-2902.	4.6	37

#	Article	IF	CITATIONS
37	Efficient Utilization of Higherâ€Lying Excited States to Trigger Chargeâ€Transfer Events. Chemistry - A European Journal, 2010, 16, 9638-9645.	3.3	36
38	Carbon Nanoforms in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1601000.	19.5	31
39	ExTTF-Based Dyes Absorbing over the Whole Visible Spectrum. Organic Letters, 2011, 13, 604-607.	4.6	30
40	Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends. Advanced Energy Materials, 2014, 4, 1301517.	19.5	30
41	Mediating Reductive Charge Shift Reactions in Electron Transport Chains. Journal of the American Chemical Society, 2017, 139, 17474-17483.	13.7	30
42	Powering reductive charge shift reactions—linking fullerenes of different electron acceptor strength to secure an energy gradient. Chemical Science, 2011, 2, 1677.	7.4	27
43	Competitive Retro-Cycloaddition Reaction in Fullerene Dimers Connected through Pyrrolidinopyrazolino Rings. Journal of Organic Chemistry, 2009, 74, 8174-8180.	3.2	25
44	Fullereneâ€Based Materials as Holeâ€Transporting/Electronâ€Blocking Layers: Applications in Perovskite Solar Cells. Chemistry - A European Journal, 2018, 24, 8524-8529.	3.3	25
45	Photoinduced C ₇₀ radical anions in polymer:fullerene blends. Physica Status Solidi - Rapid Research Letters, 2011, 5, 128-130.	2.4	23
46	Donorâ€Acceptor Hybrids for Organic Electronics. Israel Journal of Chemistry, 2014, 54, 429-439.	2.3	23
47	Large photoactive supramolecular ensembles prepared from C60–pyridine substrates and multi-Zn(ii)–porphyrin receptors. New Journal of Chemistry, 2008, 32, 159-165.	2.8	21
48	The importance of the linking bridge in donor–C60 electroactive dyads. New Journal of Chemistry, 2002, 26, 76-80.	2.8	20
49	Oxidation of 3-Alkyl-Substituted 2-Pyrazolino[60]fullerenes: A New Formyl-Containing Building Block for Fullerene Chemistry. Organic Letters, 2008, 10, 3705-3708.	4.6	20
50	Efficient and stable perovskite solar cells based on perfluorinated polymers. Polymer Chemistry, 2019, 10, 5726-5736.	3.9	20
51	Co-Solvent Effect in the Processing of the Perovskite:Fullerene Blend Films for Electron Transport Layer-Free Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2512-2520.	3.1	19
52	A ready access to unprecedented N-anilinopyrazolino[60]fullerenes. Tetrahedron Letters, 2004, 45, 1651-1654.	1.4	18
53	Efficient Light Harvesters Based on the 10-(1,3-Dithiol-2-ylidene)anthracene Core. Organic Letters, 2013, 15, 4166-4169.	4.6	18
54	Hindered Amine Light Stabilizers Increase the Stability of Methylammonium Lead Iodide Perovskite Against Light and Oxygen. ChemSusChem, 2017, 10, 3760-3764.	6.8	17

#	Article	IF	CITATIONS
55	Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy and Fuels, 2019, 3, 2779-2787.	4.9	16
56	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo[60]fullerenes vs Tetrathiafulvalene. Bulletin of the Chemical Society of Japan, 2005, 78, 1500-1507.	3.2	15
57	Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes. Journal of Materials Chemistry C, 2016, 4, 3798-3808.	5.5	15
58	Photoinduced electron transfer in a fullerene–oligophenylenevinylene dyad. New Journal of Chemistry, 2009, 33, 2174.	2.8	14
59	Mass Spectrometry Studies of the Retro-Cycloaddition Reaction of Pyrrolidino and 2-Pyrazolinofullerene Derivatives Under Negative ESI Conditions. Journal of the American Society for Mass Spectrometry, 2011, 22, 557-567.	2.8	14
60	Synthesis and photophysical properties of a [60]fullerene compound with dimethylaniline and ferrocene connected through a pyrazolino group: a study by laser flash photolysis. Physical Chemistry Chemical Physics, 2006, 8, 4104-4111.	2.8	13
61	Through-space communication in a TTF–C60–TTF triad. New Journal of Chemistry, 2007, 31, 230-236.	2.8	13
62	Isolated rigid rod behavior of functionalized single-wall carbon nanotubes in solution determined via small-angle neutron scattering. Physical Review B, 2008, 78, .	3.2	13
63	Pyrrolidino [60] and [70]fullerene homo- and heterodimers as electron acceptors for OPV. New Journal of Chemistry, 2015, 39, 1477-1482.	2.8	13
64	Modular construction and hierarchical gelation of organooxotin nanoclusters derived from simple building blocks. Chemical Communications, 2007, , 4943.	4.1	12
65	Buckyballs. Topics in Current Chemistry, 2013, 350, 1-64.	4.0	12
66	Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials. Organic Letters, 2019, 21, 3261-3264.	4.6	12
67	Charge photogeneration in donor/acceptor organic solar cells. Journal of Photonics for Energy, 2012, 2, 021001.	1.3	11
68	Relation between charge transfer and solvent polarity in fullerene derivatives: NMR studiesElectronic supplementary information (ESI) available: Table S1: chemical shifts (ppm) in C6D6 (ETN = 0.111), CDCl3 (ETN = 0.259), and CD2Cl2 (ETN = 0.309). See http://www.rsc.org/suppdata/im/b2/b203112b/. Journal of Materials Chemistry, 2002, 12, 2130-2136.	6.7	10
69	Naphthalene Diimideâ€Based Molecules for Efficient and Stable Perovskite Solar Cells. European Journal of Organic Chemistry, 2020, 2020, 5329-5339.	2.4	10
70	Doping strategies of organic n-type materials in perovskite solar cells: a chemical perspective. Sustainable Energy and Fuels, 2020, 4, 3264-3281.	4.9	10
71	The structure of p-nitrophenylhydrazones of aldehydes: the case of the p-nitrophenylhydrazone of 2-diethylamino-5-methoxy-2H-indazole-3-carboxaldehyde. Journal of Molecular Structure, 2004, 699, 17-21.	3.6	9
72	Dendriticâ€Like Molecules Built on a Pillar[5]arene Core as Hole Transporting Materials for Perovskite Solar Cells. Chemistry - A European Journal, 2021, 27, 8110-8117.	3.3	9

#	Article	IF	CITATIONS
73	Synthesis of fullerene-substituted oligo(phenylenebutadiyndiyl). Tetrahedron Letters, 2006, 47, 3715-3718.	1.4	6
74	Heptamethine Cyanine Dyes in the Design of Photoactive Carbon Nanomaterials. ACS Omega, 2017, 2, 9164-9170.	3.5	6
75	A partially-planarised hole-transporting quart- <i>p</i> -phenylene for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 4332-4335.	5.5	6
76	Dynamics of functionalized single wall carbon nanotubes in solution studied by incoherent neutron scattering experiments. Journal of Physics Condensed Matter, 2008, 20, 104208.	1.8	5
77	Chalcogen-substituted PCBM derivatives as ternary components in PM6:Y6 solar cells. Materials Advances, 2022, 3, 1071-1078.	5.4	5
78	Coordinating Electron Transport Chains to an Electron Donor. Organic Letters, 2015, 17, 5056-5059.	4.6	4
79	Carbon Nanoforms for Photovoltaics. Advanced Energy Materials, 2017, 7, 1700252.	19.5	4
80	Efficient and Stable Perovskite Solar Cells based on Nitrogenâ€Đoped Carbon Nanodots. Energy Technology, 2022, 10, .	3.8	4
81	Charge Transfer: Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends (Adv.) Tj ETQq1 I	0.78431 19.5	4 rgBT /Overl
82	Reactions and Retro-reactions of Fullerenes. World Scientific Series on Carbon Nanoscience, 2011, , 325-373.	0.1	1
83	Triarylamine Enriched Organostannoxane Drums: Synthesis, Optoelectrochemical Properties, Association Studies, and Gelation Behavior. Inorganic Chemistry, 2022, 61, 4046-4055.	4.0	1
84	A Ready Access to Unprecedented N-Anilinopyrazolino[60]fullerenes. ChemInform, 2004, 35, no.	0.0	0
85	The Isoindazole Nucleus as a Donor in Fullerene-Based Dyads. Evidence for Electron Transfer ChemInform, 2004, 35, no.	0.0	0
86	Liquid-Crystalline [60]Fullerene-TTF Dyads ChemInform, 2005, 36, no.	0.0	0
87	Synthesis and Photoinduced Intermolecular Electronic Acceptor Ability of Pyrazolo[60]fullerenes vs. Tetrathiafulvalene ChemInform, 2005, 36, no.	0.0	0
88	Introduction to the organic materials for energy conversion and storage themed collection. Sustainable Energy and Fuels, 2021, 5, 11-11.	4.9	0
89	Dendritic‣ike Molecules Built on a Pillar[5]arene Core as Hole Transporting Materials for Perovskite Solar Cells. Chemistry - A European Journal, 2021, 27, 8061-8061.	3.3	0