
Renate C Smallegange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5720419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.	2.5	208
2	Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemical Senses, 2005, 30, 145-152.	2.0	181
3	Development and Field Evaluation of a Synthetic Mosquito Lure That Is More Attractive than Humans. PLoS ONE, 2010, 5, e8951.	2.5	156
4	Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate. Journal of Chemical Ecology, 2007, 33, 1831-1844.	1.8	135
5	Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malaria Journal, 2010, 9, 292.	2.3	133
6	Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE, 2010, 5, e15829.	2.5	128
7	Cultured skin microbiota attracts malaria mosquitoes. Malaria Journal, 2009, 8, 302.	2.3	120
8	Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s Medical and Veterinary Entomology, 2006, 20, 280-287.	1.5	110
9	A Novel Synthetic Odorant Blend for Trapping of Malaria and Other African Mosquito Species. Journal of Chemical Ecology, 2012, 38, 235-244.	1.8	109
10	Sweaty skin: an invitation to bite?. Trends in Parasitology, 2011, 27, 143-148.	3.3	105
11	<i>Plasmodium</i> -associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4209-E4218.	7.1	105
12	Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasites and Vectors, 2013, 6, 345.	2.5	100
13	Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malaria Journal, 2003, 2, 29.	2.3	99
14	The Effect of Aliphatic Carboxylic Acids on Olfaction-Based Host-Seeking of the Malaria Mosquito Anopheles gambiae sensu stricto. Journal of Chemical Ecology, 2009, 35, 933-943.	1.8	97
15	Malaria Infected Mosquitoes Express Enhanced Attraction to Human Odor. PLoS ONE, 2013, 8, e63602.	2.5	82
16	Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiology Ecology, 2010, 74, 1-9.	2.7	74
17	Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Medical and Veterinary Entomology, 2004, 18, 429-438.	1.5	62
18	Mosquito Attraction: Crucial Role of Carbon Dioxide in Formulation of a Five-Component Blend of Human-Derived Volatiles. Journal of Chemical Ecology, 2015, 41, 567-573.	1.8	62

RENATE C SMALLEGANGE

#	Article	IF	CITATIONS
19	Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malaria Journal, 2008, 7, 230.	2.3	55
20	Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malaria Journal, 2011, 10, 28.	2.3	52
21	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	51
22	Parasitoid load affects plant fitness in a tritrophic system. Entomologia Experimentalis Et Applicata, 2008, 128, 172-183.	1.4	51
23	Optimizing Odor-Baited Trap Methods for Collecting Mosquitoes during the Malaria Season in The Gambia. PLoS ONE, 2009, 4, e8167.	2.5	50
24	Effect of human odours and positioning of CO ₂ release point on trap catches of the malaria mosquito <i>Anopheles gambiae sensu stricto </i> in an olfactometer. Physiological Entomology, 2008, 33, 116-122.	1.5	48
25	Attractiveness of MM-X Traps Baited with Human or Synthetic Odor to Mosquitoes (Diptera: Culicidae) in The Gambia. Journal of Medical Entomology, 2007, 44, 970-983.	1.8	47
26	Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Scientific Reports, 2017, 7, 9283.	3.3	42
27	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infection, Genetics and Evolution, 2013, 18, 87-93.	2.3	41
28	Types and numbers of sensilla on antennae and maxillary palps of small and large houseflies, <i>Musca domestica</i> (Diptera, Muscidae). Microscopy Research and Technique, 2008, 71, 880-886.	2.2	38
29	Field Testing of Different Chemical Combinations as Odour Baits for Trapping Wild Mosquitoes in The Gambia. PLoS ONE, 2011, 6, e19676.	2.5	37
30	Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s. Entomologia Experimentalis Et Applicata, 2011, 139, 170-179.	1.4	35
31	Effectiveness of Synthetic Versus Natural Human Volatiles as Attractants for <i>Anopheles gambiae</i> (Diptera: Culicidae) Sensu Stricto. Journal of Medical Entomology, 2010, 47, 338-344.	1.8	31
32	Behavioural responses of Anopheles gambiae sensu stricto to components of human breath, sweat and urine depend on mixture composition and concentration. Medical and Veterinary Entomology, 2011, 25, 247-255.	1.5	30
33	Variations in <i>Ixodes ricinus</i> Density and <i>Borrelia</i> Infections Associated with Cattle Introduced into a Woodland in The Netherlands. Applied and Environmental Microbiology, 2008, 74, 7138-7144.	3.1	27
34	Identification of candidate volatiles that affect the behavioural response of the malaria mosquito <i>Anopheles gambiae sensu stricto</i> to an active kairomone blend: laboratory and semiâ€field assays. Physiological Entomology, 2012, 37, 60-71.	1.5	27
35	Effectiveness of Synthetic Versus Natural Human Volatiles as Attractants for <i>Anopheles gambiae</i> (Diptera: Culicidae) Sensu Stricto : Table 1. Journal of Medical Entomology, 2010, 47, 338-344.	1.8	24
36	Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants. Parasites and Vectors, 2012, 5, 202.	2.5	24

RENATE C SMALLEGANGE

#	Article	IF	CITATIONS
37	Public health significance of urban pests. Lancet Infectious Diseases, The, 2009, 9, 535-536.	9.1	18
38	Associative learning of visual and gustatory cues in the large cabbage white butterfly, Pieris brassicae. Animal Biology, 2006, 56, 157-172.	1.0	17
39	Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans. Frontiers in Physiology, 2012, 3, 197.	2.8	17
40	<i>Wolbachia</i> infection does not alter attraction of the mosquito <i>Aedes (Stegomyia) aegypti</i> to human odours. Medical and Veterinary Entomology, 2014, 28, 457-460.	1.5	6
41	Associative learning in host-finding by female Pieris brassicae butterflies: relearning preferences. , 1992, , 162-164.		4
42	Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae s.s Malaria Journal, 2010, 9, .	2.3	3
43	13. Semiochemical tools for a new generation of livestock pest control. Ecology and Control of Vector-Borne Diseases, 2018, , 389-434.	0.7	2
44	20. Control of vector-borne diseases in the livestock industry: new opportunities and challenges. Ecology and Control of Vector-Borne Diseases, 2018, , 575-580.	0.7	0