George K Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5719334/publications.pdf

Version: 2024-02-01

		279798	265206
51	1,823	23	42
papers	citations	h-index	g-index
F.1	F.1	F.1	2221
51	51	51	2221
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics, 2007, 59, 539-553.	2.4	127
2	Lipases in water-in-ionic liquid microemulsions: Structural and activity studies. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 50-56.	1.8	115
3	Soluble interleukin 2 receptor molecules in the serum of patients with autoimmune diseases. Clinical Immunology and Immunopathology, 1989, 50, 321-332.	2.0	104
4	Role of Cytokines in the Pathogenesis of Anemia of Chronic Disease in Rheumatoid Arthritis. Clinical Immunology, 1999, 92, 153-160.	3.2	90
5	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	8.2	89
6	HLA–DR1001 presents "alteredâ€self―peptides derived from jointâ€associated proteins by accepting citrulline in three of its binding pockets. Arthritis and Rheumatism, 2010, 62, 2909-2918.	6.7	86
7	Unique peptide binding characteristics of the disease-associated DQ($\hat{l}\pm1$ * 0501, \hat{l}^21 * 0201) vs the non-disease-associated DQ($\hat{l}\pm1$ * 0201, \hat{l}^21 * 0202) molecule. Immunogenetics, 1997, 46, 484-492.	2.4	84
8	Large-Scale Characterization of Natural Ligands Explains the Unique Gluten-Binding Properties of HLA-DQ2. Journal of Immunology, 2008, 180, 3268-3278.	0.8	75
9	Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	68
10	Zinc Transporter 8 Autoantibodies and Their Association With (i>SLC30A8 li>and (i>HLA-DQ Genes Differ Between Immigrant and Swedish Patients With Newly Diagnosed Type 1 Diabetes in the Better Diabetes Diagnosis Study. Diabetes, 2012, 61, 2556-2564.	0.6	67
11	Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nature Communications, 2015, 6, 6681.	12.8	66
12	Type 1 Diabetes-associated HLA-DQ8 Transdimer Accommodates a Unique Peptide Repertoire. Journal of Biological Chemistry, 2012, 287, 9514-9524.	3.4	64
13	Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5551-5556.	7.1	58
14	Gluten-Specific T Cells Cross-React between HLA-DQ8 and the HLA-DQ2α/DQ8β Transdimer. Journal of Immunology, 2011, 187, 5123-5129.	0.8	52
15	Interplay between genetics and the environment in the development of celiac disease: perspectives for a healthy life. Journal of Clinical Investigation, 2001, 108, 1261-1266.	8.2	50
16	T-cell recognition of HLA-DQ2-bound gluten peptides can be influenced by an N-terminal proline at p-1. Immunogenetics, 2005, 57, 8-15.	2.4	49
17	Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in complex with two disease-specific epitopes. International Immunology, 2000, 12, 1157-1166.	4.0	47
18	Allelic Variation in Key Peptide-Binding Pockets Discriminates between Closely Related Diabetes-Protective and Diabetes-Susceptible <i>HLA-DQB1*06 < /i>Alleles. Journal of Immunology, 2006, 176, 1988-1998.</i>	0.8	47

#	Article	IF	Citations
19	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	8.2	47
20	Molecular basis for increased susceptibility of Indigenous North Americans to seropositive rheumatoid arthritis. Annals of the Rheumatic Diseases, 2017, 76, 1915-1923.	0.9	36
21	Novel Structural Features of the Human Histocompatibility Molecules HLA-DQ as Revealed by Modeling Based on the Published Structure of the Related Molecule HLA-DR. Journal of Structural Biology, 1996, 117, 145-163.	2.8	29
22	The Binding of Antigenic Peptides to HLA-DR Is Influenced by Interactions between Pocket 6 and Pocket 9. Journal of Immunology, 2009, 183, 3249-3258.	0.8	27
23	Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: Keys to the fate of islet ?-cells. American Journal of Medical Genetics Part A, 2002, 115, 37-47.	2.4	24
24	The increased ability to present citrullinated peptides is not unique to HLA-SE molecules: arginine-to-citrulline conversion also enhances peptide affinity for HLA-DQ molecules. Arthritis Research and Therapy, 2016, 18, 254.	3.5	23
25	Peptide analysis, stability studies, and structural modeling explain contradictory peptide motifs and unique properties of the NOD mouse MHC class II molecule H2-Ag7. European Journal of Immunology, 2002, 32, 2105.	2.9	22
26	Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T-cell clones. Human Immunology, 2002, 63, 185-193.	2.4	20
27	Type 1 diabetes as an autoimmune disease: the evidence. Diabetologia, 2014, 57, 1500-1501.	6.3	20
28	Epitope Stealing as a Mechanism of Dominant Protection by HLA-DQ6 in Type 1 Diabetes. Diabetes, 2019, 68, 787-795.	0.6	20
29	RGD sequences in several receptor proteins: novel cell adhesion function of receptors?. International Journal of Biological Macromolecules, 1998, 22, 51-57.	7.5	17
30	Motifs of Three HLA-DQ Amino Acid Residues ($\hat{1}\pm44$, $\hat{1}^257$, $\hat{1}^2135$) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children. Diabetes, 2020, 69, 1573-1587.	0.6	17
31	Dominance of an alternative CLIP sequence in the celiac disease associated HLA-DQ2 molecule. Immunogenetics, 2008, 60, 551-555.	2.4	16
32	Discriminative T cell recognition of cross-reactive islet-antigens is associated with HLA-DQ8 transdimer–mediated autoimmune diabetes. Science Advances, 2019, 5, eaaw9336.	10.3	15
33	Structural analysis of two HLA-DR-presented autoantigenic epitopes: crucial role of peripheral but not central peptide residues for T-cell receptor recognition. Molecular Immunology, 2000, 37, 813-825.	2.2	14
34	Definition of the peptide binding motif within DRB1*1401 restricted epitopes by peptide competition and structural modeling. Molecular Immunology, 2008, 45, 2651-2659.	2.2	14
35	Differential Binding of Pyruvate Dehydrogenase Complex-E2 Epitopes by DRB1*08:01 and DRB1*11:01 Is Predicted by Their Structural Motifs and Correlates with Disease Risk. Journal of Immunology, 2013, 190, 4516-4524.	0.8	13
36	DRB4*01:01 Has a Distinct Motif and Presents a Proinsulin Epitope That Is Recognized in Subjects with Type 1 Diabetes. Journal of Immunology, 2018, 201, 3524-3533.	0.8	12

#	Article	IF	CITATIONS
37	INTERPRETATIONS OF THE SOLUTION AND ORIENTED FILM SPECTRA OF BROWN MEMBRANE OF HALOBACTERIUM HALOBIUM. Photochemistry and Photobiology, 1981, 33, 455-466.	2.5	11
38	Eleven Amino Acids of HLA-DRB1 and Fifteen Amino Acids of HLA-DRB3, 4, and 5 Include Potentially Causal Residues Responsible for the Risk of Childhood Type 1 Diabetes. Diabetes, 2019, 68, 1692-1704.	0.6	11
39	Use of MHC II Structural Features in the Design of Vaccines for Organ-Specific Autoimmune Diseases. Current Pharmaceutical Design, 2009, 15, 3262-3273.	1.9	9
40	Trans heterodimer between two non-arthritis-associated HLA alleles can predispose to arthritis in humanized mice. Arthritis and Rheumatism, 2011, 63, 1552-1561.	6.7	9
41	A modified flow cytometry method for objective estimation of human CD4 ⁺ regulatory T cells (CD4 ⁺ Tregs) in peripheral blood, via CD4/CD25/CD45RO/FoxP3 labeling. Cytometry Part B - Clinical Cytometry, 2020, 98, 259-269.	1.5	8
42	Orientations of the retinyl and the heme chromophores in the brown membrane of Halobacterium halobium. Journal of Molecular Biology, 1981, 152, 35-47.	4.2	7
43	Functional inhibition related to structure of a highly potent insulinâ€specific CD8 T cell clone using altered peptide ligands. European Journal of Immunology, 2008, 38, 240-249.	2.9	7
44	DRB1*12:01 presents a unique subset of epitopes by preferring aromatics in pocket 9. Molecular Immunology, 2012, 50, 26-34.	2.2	7
45	Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Diabetes, 2020, 69, 2523-2535.	0.6	7
46	Etiopathogenesis of Insulin Autoimmunity. Anatomy Research International, 2012, 2012, 1-20.	1.1	6
47	Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden. Scientific Reports, 2021, 11, 8821.	3.3	6
48	The KAG motif of HLA-DRB1 (\hat{l}^2 71, \hat{l}^2 74, \hat{l}^2 86) predicts seroconversion and development of type 1 diabetes. EBioMedicine, 2021, 69, 103431.	6.1	6
49	SPECIFIC MONOCLONAL ANTIBODIES AGAINST THE SURFACE OF RAT ISLET β CELLS. Cell Biology International, 2002, 26, 817-828.	3.0	4
50	Association of HLA-DQ Heterodimer Residues â^18β and β57 With Progression From Islet Autoimmunity to Diabetes in the Diabetes Prevention Trial–Type 1. Diabetes Care, 2022, 45, 1610-1620.	8.6	1
51	Response to commentary by Pujol-Borrell and Botazzo. Trends in Immunology, 1989, 10, 149-150.	7. 5	0