Alessandro Pancrazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations and prognosis in primary myelofibrosis. Leukemia, 2013, 27, 1861-1869.	7.2	653
2	Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood, 2014, 123, 1552-1555.	1.4	346
3	Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia, 2007, 21, 1952-1959.	7.2	328
4	The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia, 2014, 28, 1804-1810.	7.2	263
5	CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia, 2014, 28, 1494-1500.	7.2	248
6	Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Advances, 2016, 1, 21-30.	5.2	243
7	Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia, 2005, 19, 1847-1849.	7.2	236
8	Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood, 2008, 112, 844-847.	1.4	216
9	Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood, 2009, 114, 1477-1483.	1.4	196
10	Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica, 2011, 96, 315-318.	3.5	160
11	Anaemia characterises patients with myelofibrosis harbouring MplW515L/Kmutation. British Journal of Haematology, 2007, 137, 244-247.	2.5	153
12	Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica, 2008, 93, 41-48.	3.5	146
13	Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood, 2011, 118, 2069-2076.	1.4	144
14	Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood, 2017, 129, 3227-3236.	1.4	137
15	Molecular Profiling of CD34+Cells in Idiopathic Myelofibrosis Identifies a Set of Disease-Associated Genes and Reveals the Clinical Significance of Wilms' Tumor Gene 1 (WT1). Stem Cells, 2007, 25, 165-173.	3.2	111
16	A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF- \hat{I}^21 in the development of myelofibrosis. Blood, 2005, 105, 3493-3501.	1.4	103
17	Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood, 2013, 121, 360-368.	1.4	102
18	Increased Risk of Lymphoid Neoplasms in Patients with Philadelphia Chromosome–Negative Myeloproliferative Neoplasms. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2068-2073.	2.5	100

#	Article	IF	CITATIONS
19	Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia, 2013, 27, 2032-2039.	7.2	96
20	Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood, 2013, 121, 4388-4395.	1.4	83
21	Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group. American Journal of Hematology, 2016, 91, 681-686.	4.1	80
22	Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer Journal, 2015, 5, e360-e360.	6.2	72
23	MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Experimental Hematology, 2007, 35, 1708.e1-1708.e12.	0.4	71
24	A quantitative assay for JAK2V617F mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia, 2006, 20, 1055-1060.	7.2	68
25	Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia, 2014, 28, 1052-1059.	7.2	66
26	Abnormalities of GATA-1 in Megakaryocytes from Patients with Idiopathic Myelofibrosis. American Journal of Pathology, 2005, 167, 849-858.	3.8	62
27	Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia, 2011, 25, 1834-1839.	7.2	59
28	A Sensitive Detection Method for MPLW515L or MPLW515K Mutation in Chronic Myeloproliferative Disorders with Locked Nucleic Acid-Modified Probes and Real-Time Polymerase Chain Reaction. Journal of Molecular Diagnostics, 2008, 10, 435-441.	2.8	47
29	Prognostic impact of bone marrow fibrosis in primary myelofibrosis. A study of the AGIMM group on 490 patients. American Journal of Hematology, 2016, 91, 918-922.	4.1	47
30	Elevated monocyte distribution width in COVID-19 patients: The contribution of the novel sepsis indicator. Clinica Chimica Acta, 2020, 509, 22-24.	1.1	42
31	Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica, 2010, 95, 1435-1438.	3.5	41
32	JAK2V617F complete molecular remission in polycythemia vera/essential thrombocythemia patients treated with ruxolitinib. Blood, 2015, 125, 3352-3353.	1.4	41
33	Safety and efficacy of the maximum tolerated dose of givinostat in polycythemia vera: a two-part Phase lb/ll study. Leukemia, 2020, 34, 2234-2237.	7.2	34
34	Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood, 2005, 106, 4102-4113.	1.4	32
35	B-, T-, and NK-cell lineage involvement in JAK2V617F-positive patients with idiopathic myelofibrosis. Haematologica, 2007, 92, 258-259.	3.5	26
36	Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders–A consensus project of the Italian Society of Hematology. Leukemia Research, 2017, 58, 63-72.	0.8	25

#	Article	IF	CITATIONS
37	Mutation landscape in patients with myelofibrosis receiving ruxolitinib or hydroxyurea. Blood Cancer Journal, 2018, 8, 122.	6.2	25
38	Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative 'idiopathic' erythrocytosis. Haematologica, 2013, 98, e101-e102.	3.5	24
39	Frequency and clinical correlates of JAK2 46/1 (GGCC) haplotype in primary myelofibrosis. Leukemia, 2010, 24, 1533-1537.	7.2	22
40	PRV-1 , erythroid colonies and platelet Mpl are unrelated to thrombosis in essential thrombocythaemia. British Journal of Haematology, 2004, 127, 214-219.	2.5	21
41	CXCR4â€independent rescue of the myeloproliferative defect of the gata1 ^{low} myelofibrosis mouse model by Aplidin®. Journal of Cellular Physiology, 2010, 225, 490-499.	4.1	16
42	A data-driven network model of primary myelofibrosis: transcriptional and post-transcriptional alterations in CD34+ cells. Blood Cancer Journal, 2016, 6, e439-e439.	6.2	16
43	Comparison of serologic and molecular SARS-CoV 2 results in a large cohort in Southern Tuscany demonstrates a role for serologic testing to increase diagnostic sensitivity. Clinical Biochemistry, 2020, 84, 87-92.	1.9	14
44	Influence of the Jak2V617F Mutational Load at Diagnosis on Major Clinical Aspects in Patients with Polycythemia Vera Blood, 2006, 108, 5-5.	1.4	14
45	Inconsistencies in the association between the JAK2V617F mutation and PRV-1 over-expression among the chronic myeloproliferative diseases. British Journal of Haematology, 2006, 132, 652-654.	2.5	11
46	Neutrophilic progression in a case of polycytemia vera mimicking chronic neutrophilic leukemia: Clinical and molecular characterization. Pathology Research and Practice, 2015, 211, 341-343.	2.3	5
47	Impact of JAK2(V617F) mutation status on treatment response to anagrelide in essential thrombocythemia: an observational, hypothesis-generating study. Drug Design, Development and Therapy, 2015, 9, 2687.	4.3	4
48	International external quality assurance of JAK2 V617F quantification. Annals of Hematology, 2019, 98, 1111-1118.	1.8	3
49	Effect of the Number of Prognostically Relevant Mutated Genes on Survival and Leukemia Progression in Primary Myelofibrosis. Blood, 2013, 122, 104-104.	1.4	3
50	Tie2 Expressing Monocytes in the Spleen of Patients with Primary Myelofibrosis. PLoS ONE, 2016, 11, e0156990.	2.5	3
51	Mutational Landscape of Patients with Myelofibrosis That Do Not Harbor Mutations in JAK2, MPL and Calreticulin Driver Genes. Blood, 2015, 126, 4091-4091.	1.4	2
52	Lab tests for MPN. International Review of Cell and Molecular Biology, 2022, 366, 187-220.	3.2	1
53	Clonal architecture of <i>JAK2</i> <scp>V617F</scp> mutated cells during treatment with ruxolitinib. Hematological Oncology, 2018, 36, 357-359.	1.7	0
54	Targeted Cancer Exome Sequencing Discovers Novel Recurrent Mutations In MPN. Blood, 2013, 122, 4099-4099.	1.4	0