Siegfried Mense

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5718390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain?. Neuroscience Letters, 1993, 153, 9-12.	2.1	227
2	Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: A comparison with bradykinin. Brain Research, 1976, 105, 459-469.	2.2	162
3	The pathogenesis of muscle pain. Current Pain and Headache Reports, 2003, 7, 419-425.	2.9	160
4	Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain, 2005, 114, 168-176.	4.2	145
5	Painful and non-painful pressure sensations from human skeletal muscle. Experimental Brain Research, 2004, 159, 273-283.	1.5	124
6	Muscle Pain. Deutsches Ärzteblatt International, 2008, 105, 214-9.	0.9	116
7	Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain, 2004, 110, 149-157.	4.2	106
8	Effects of temperature on the discharges of muscle spindles and tendon organs. Pflugers Archiv European Journal of Physiology, 1978, 374, 159-166.	2.8	100
9	Responses of group IV and group III muscle afferents to thermal stimuli. Brain Research, 1976, 113, 201-205.	2.2	87
10	Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in the rat. Neuroscience Letters, 2003, 338, 25-28.	2.1	71
11	Sensitization of rat dorsal horn neurons by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Research, 2007, 1169, 34-43.	2.2	69
12	Dorsal horn neurons having input from low back structures in rats. Pain, 2008, 138, 119-129.	4.2	68
13	Experimental pain by ischaemic contractions compared with pain by intramuscular infusions of adenosine and hypertonic saline. European Journal of Pain, 2003, 7, 93-102.	2.8	65
14	Expression of neuropeptides and nitric oxide synthase in neurones innervating the inflamed rat urinary bladder. Journal of the Autonomic Nervous System, 1997, 65, 33-44.	1.9	64
15	Myositis-induced functional reorganisation of the rat dorsal horn: effects of spinal superfusion with antagonists to neurokinin and glutamate receptors. Pain, 1997, 69, 219-230.	4.2	62
16	Innervation of the thoracolumbar fascia. European Journal of Translational Myology, 2019, 29, 8297.	1.7	62
17	Nociceptive input from the rat thoracolumbar fascia to lumbar dorsal horn neurones. European Journal of Pain, 2011, 15, 810-815.	2.8	61
18	Injection of nerve growth factor into a low back muscle induces long-lasting latent hypersensitivity in rat dorsal horn neurons, Pain, 2013, 154, 1953-1960.	4.2	54

SIEGFRIED MENSE

#	Article	IF	CITATIONS
19	How Do Muscle Lesions such as Latent and Active Trigger Points Influence Central Nociceptive Neurons?. Journal of Musculoskeletal Pain, 2010, 18, 348-353.	0.3	47
20	Basic neurobiologic mechanisms of pain and analgesia. American Journal of Medicine, 1983, 75, 4-14.	1.5	46
21	Role of spinal microglia in myositisâ€induced central sensitisation: An immunohistochemical and behavioural study in rats. European Journal of Pain, 2009, 13, 915-923.	2.8	42
22	Biochemical Pathogenesis of Myofascial Pain. Journal of Musculoskeletal Pain, 1996, 4, 145-162.	0.3	40
23	Shock wave treatment improves nerve regeneration in the rat. Muscle and Nerve, 2013, 47, 702-710.	2.2	39
24	Evidence for the existence of different receptor sites for algesic agents at the endings of muscular group IV afferent units. Pflugers Archiv European Journal of Physiology, 1976, 362, 141-146.	2.8	38
25	Pathophysiologic Basis of Muscle Pain Syndromes: An Update. Physical Medicine and Rehabilitation Clinics of North America, 1997, 8, 23-53.	1.3	38
26	The possible role of the NO-cGMP pathway in nociception: Different spinal and supraspinal action of enzyme blockers on rat dorsal horn neurones. Pain, 2005, 117, 358-367.	4.2	34
27	Contribution of TTX-resistant C-fibres and Aδ-fibres to nociceptive flexor-reflex and non-flexor-reflex pathways in cats. Neuroscience Research, 2000, 37, 277-287.	1.9	33
28	Pathophysiological activity in rat dorsal horn neurones in segments rostral to a chronic spinal cord injury. Brain Research, 2003, 974, 134-145.	2.2	33
29	Neuroanatomical pathway of nociception originating in a low back muscle (multifidus) in the rat. Neuroscience Letters, 2007, 427, 22-27.	2.1	29
30	Evidence for the existence of nociceptors in rat thoracolumbar fascia. Journal of Bodywork and Movement Therapies, 2016, 20, 623-628.	1.2	28
31	Tetrodotoxin-resistant conductivity and spinal effects of cutaneous C-fibre afferents in the rat. Neuroscience Research, 2001, 39, 413-419.	1.9	26
32	Prevention and reversal of latent sensitization of dorsal horn neurons by glial blockers in a model of low back pain in male rats. Journal of Neurophysiology, 2017, 118, 2059-2069.	1.8	24
33	Comparison of nerve growth factor–induced sensitization pattern in lumbar and tibial muscle and fascia. Muscle and Nerve, 2015, 52, 265-272.	2.2	22
34	Tetrodotoxin block of A-fibre afferents from skin and muscle – a tool to study pure C-fibre effects in the spinal cord. Pflugers Archiv European Journal of Physiology, 2003, 445, 607-613.	2.8	21
35	Effects of Spinal Cord Superfusion with Substance P on the Excitability of Rat Dorsal Horn Neurons Processing Input from Deep Tissues. Journal of Musculoskeletal Pain, 1995, 3, 23-43.	0.3	20
36	Rats with chronic spinal cord transection as a possible model for the at-level pain of paraplegic patients. Neuroscience Letters, 2002, 323, 117-120.	2.1	20

SIEGFRIED MENSE

#	Article	IF	CITATIONS
37	A rat model for studying effects of sacral neuromodulation on the contractile activity of a chronically inflamed bladder. BJU International, 2004, 94, 158-163.	2.5	20
38	Interaction between neurotransmitter antagonists and effects of sacral neuromodulation in rats with chronically hyperactive bladder. BJU International, 2005, 96, 900-908.	2.5	19
39	Spinal cord fractalkine (CX3CL1) signaling is critical for neuronal sensitization in experimental nonspecific, myofascial low back pain. Journal of Neurophysiology, 2021, 125, 1598-1611.	1.8	16
40	Changes in the number of nitric oxide-synthesizing neurones on both sides of a chronic transection of the rat spinal cord. Neuroscience Letters, 2000, 287, 125-128.	2.1	15
41	Changes in NADPH-diaphorase activity in the rat dorsal horn following an acute experimental myositis. Histochemistry, 1995, 103, 459-462.	1.9	10
42	Effects on c-Fos expression in the PAG and thalamus by selective input via tetrodotoxin-resistant afferent fibres from muscle and skin. Neuroscience Research, 2006, 56, 270-278.	1.9	9
43	ABOLITION OF CYSTITIS-INDUCED BLADDER INSTABILITY BY LOCAL SPINAL CORD COOLING. Journal of Urology, 1998, 160, 236-241.	0.4	8
44	Fatigue and pain; what is the connection?. Pain, 2010, 148, 177-178.	4.2	7
45	High-frequency modulation of rat spinal field potentials: effects of slowly conducting muscle vs. skin afferents. Journal of Neurophysiology, 2016, 115, 692-700.	1.8	7
46	Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Reports, 2021, 6, e904.	2.7	7
47	Do we know enough to put forward a unifying hypothesis?. Journal of Pain, 2002, 3, 264-267.	1.4	6
48	Leukotriene D4 depresses the mechanosensitivity of group III and IV muscle receptors in the rat. NeuroReport, 1994, 5, 645-648.	1.2	5
49	Fibroblast growth factor-2 acutely influences the impulse activity of rat dorsal horn neurones. Neuroscience Research, 2001, 40, 115-123.	1.9	5
50	Tetrodotoxin-resistant fibres and spinal Fos expression: differences between input from muscle and skin. Experimental Brain Research, 2013, 224, 571-580.	1.5	5
51	Fibroblast growth factor-2 depresses the impulse activity of rat dorsal horn neurones in vivo. Neuroscience Letters, 1995, 200, 65-68.	2.1	4
52	Central Nervous Sequelae of Local Muscle Pain. Journal of Musculoskeletal Pain, 2004, 12, 101-109.	0.3	4
53	Action potentials and subthreshold potentials of dorsal horn neurons in a rat model of myositis: a study employing intracellular recordings in vivo. Journal of Neurophysiology, 2019, 122, 632-643.	1.8	4

Referral of Musculoskeletal Pain. , 2010, , 177-205.

#	Article	IF	CITATIONS
55	Characteristics of Muscle Nociception. Pain and Headache, 2007, , 7-17.	0.1	1
56	Nociception. , 2012, , 95-101.		1
57	Response to Weiner and Schmader—Postherpetic Pain: More Than Sensory Neuralgia?. Pain Medicine, 2006, 7, 250-250.	1.9	Ο
58	Morphology of Myofascial Trigger Points: What Does a Trigger Point Look Like?. , 2010, , 85-102.		0
59	Anatomy of Nociceptors. , 2020, , 11-32.		0