Jian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571737/publications.pdf

Version: 2024-02-01

		159585	214800
48	7,755	30	47
papers	citations	h-index	g-index
50	50	50	6965
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Symplastic communication in the root cap directs auxin distribution to modulate root development. Journal of Integrative Plant Biology, 2022, 64, 859-870.	8.5	8
2	SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Research, 2022, 50, 7326-7349.	14.5	8
3	Single-Cell Transcriptome Analysis in Plants: Advances and Challenges. Molecular Plant, 2021, 14, 115-126.	8.3	127
4	Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. New Phytologist, 2021, 231, 225-242.	7.3	36
5	Mechanisms of stress response in the root stem cell niche. Journal of Experimental Botany, 2021, 72, 6746-6754.	4.8	10
6	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	10.3	37
7	Rocks in the auxin stream: Wound-induced auxin accumulation and <i>ERF115</i> expression synergistically drive stem cell regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16667-16677.	7.1	63
8	A single-cell view of tissue regeneration in plants. Current Opinion in Plant Biology, 2019, 52, 149-154.	7.1	24
9	Control of Cell Fate Reprogramming Towards De Novo Shoot Organogenesis. Plant and Cell Physiology, 2018, 59, 713-719.	3.1	22
10	Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications, 2018, 9, 2346.	12.8	66
11	A Sacrifice-for-Survival Mechanism Protects Root Stem Cell Niche from Chilling Stress. Cell, 2017, 170, 102-113.e14.	28.9	139
12	Clathrin regulates blue lightâ€triggered lateral auxin distribution and hypocotyl phototropism in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 165-176.	5.7	21
13	TOPOISOMERASE1α Acts through Two Distinct Mechanisms to Regulate Stele and Columella Stem Cell Maintenance. Plant Physiology, 2016, 171, 483-493.	4.8	20
14	SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root. Plant Physiology, 2016, 170, 1675-1683.	4.8	48
15	Wound signaling of regenerative cell reprogramming. Plant Science, 2016, 250, 178-187.	3.6	55
16	Protocol: a method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 2016, 12, 27.	4.3	22
17	Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis. Molecular Plant, 2016, 9, 101-112.	8.3	28
18	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	4.1	19

#	Article	IF	CITATIONS
19	A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap. Frontiers in Plant Science, 2015, 6, 206.	3.6	29
20	Origin and Development of the Root Cap in Rice. Plant Physiology, 2014, 166, 603-613.	4.8	39
21	Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis. Journal of Experimental Botany, 2014, 65, 1165-1179.	4.8	10
22	Transcriptome Comparison of Global Distinctive Features Between Pollination and Parthenocarpic Fruit Set Reveals Transcriptional Phytohormone Cross-Talk in Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 2014, 55, 1325-1342.	3.1	54
23	Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russian Journal of Plant Physiology, 2014, 61, 688-696.	1.1	16
24	ROP3 GTPase Contributes to Polar Auxin Transport and Auxin Responses and Is Important for Embryogenesis and Seedling Growth in < i > Arabidopsis < $ i>$ ÂÂ. Plant Cell, 2014, 26, 3501-3518.	6.6	46
25	A CLE–WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. Journal of Experimental Botany, 2013, 64, 5359-5369.	4.8	41
26	Shedding light on auxin movement: Light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signaling and Behavior, 2013, 8, e23355.	2.4	33
27	Root Development. , 2013, , 297-316.		1
28	A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2497-2514.	6.6	84
29	A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division. Cell, 2012, 150, 1002-1015.	28.9	273
30	COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in <i>Arabidopsis Pi>. Development (Cambridge), 2012, 139, 3402-3412.</i>	2.5	167
31	The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight. PLoS ONE, 2012, 7, e34231.	2.5	83
32	The Arabidopsis RETARDED ROOT GROWTH Gene Encodes a Mitochondria-Localized Protein That Is Required for Cell Division in the Root Meristem Â. Plant Physiology, 2011, 157, 1793-1804.	4.8	26
33	Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development (Cambridge), 2010, 137, 3245-3255.	2.5	201
34	<i>Arabidopsis</i> Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche Â. Plant Cell, 2010, 22, 3692-3709.	6.6	167
35	Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 2008, 456, 962-966.	27.8	228
36	The NAC Domain Transcription Factors FEZ and SOMBRERO Control the Orientation of Cell Division Plane in Arabidopsis Root Stem Cells. Developmental Cell, 2008, 15, 913-922.	7.0	229

#	Article	IF	CITATIONS
37	Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 2007, 449, 1008-1013.	27.8	761
38	A Molecular Framework for Plant Regeneration. Science, 2006, 311, 385-388.	12.6	312
39	Polar PIN Localization Directs Auxin Flow in Plants. Science, 2006, 312, 883-883.	12.6	754
40	Polar auxin transport and patterning: grow with the flow. Genes and Development, 2006, 20, 922-926.	5.9	41
41	The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433, 39-44.	27.8	1,789
42	Cell polarity: ROPing the ends together. Current Opinion in Plant Biology, 2005, 8, 613-618.	7.1	51
43	Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. Plant Cell, 2005, 17, 525-536.	6.6	422
44	Brassinosteroids Stimulate Plant Tropisms through Modulation of Polar Auxin Transport in Brassica and Arabidopsis. Plant Cell, 2005, 17, 2738-2753.	6.6	218
45	The 14–Amino Acid CLV3, CLE19, and CLE40 Peptides Trigger Consumption of the Root Meristem in Arabidopsis through a CLAVATA2-Dependent Pathway. Plant Cell, 2005, 17, 2542-2553.	6.6	265
46	Root-Specific CLE19 Overexpression and the sol1/2 Suppressors Implicate a CLV-like Pathway in the Control of Arabidopsis Root Meristem Maintenance. Current Biology, 2003, 13, 1435-1441.	3.9	269
47	Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes. Current Biology, 2003, 13, 1378-1387.	3.9	390
48	Ultraviolet-B radiation induces cell death in root tips and reprograms metabolism in Arabidopsis. Biologia Plantarum, 0, 64, 764-772.	1.9	2