
Rashmi Sasidharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology, 2022, 64, 412-430.	8.5	25
2	Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 2022, 11, .	4.3	6
3	Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiology, 2022, 190, 1365-1383.	4.8	30
4	Plant performance and food security in a wetter world. New Phytologist, 2021, 229, 5-7.	7.3	11
5	Keeping the shoot above water – submergence triggers antithetical growth responses in stems and petioles of watercress (<i>Nasturtium officinale</i>). New Phytologist, 2021, 229, 140-155.	7.3	25
6	Shape shifting by amphibious plants in dynamic hydrological niches. New Phytologist, 2021, 229, 79-84.	7.3	24
7	The role of ethylene in metabolic acclimations to low oxygen. New Phytologist, 2021, 229, 64-70.	7.3	81
8	Redox and low-oxygen stress: signal integration and interplay. Plant Physiology, 2021, 186, 66-78.	4.8	29
9	Age-Dependent Abiotic Stress Resilience in Plants. Trends in Plant Science, 2021, 26, 692-705.	8.8	60
10	Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species. Plants, 2020, 9, 1022.	3.5	18
11	A high throughput method for quantifying number and size distribution of Arabidopsis seeds using large particle flow cytometry. Plant Methods, 2020, 16, 27.	4.3	7
12	Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 2019, 10, 3540.	12.8	76
13	Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 2019, 10, 4020.	12.8	195
14	After The Deluge: Plant Revival Post-Flooding. Trends in Plant Science, 2019, 24, 443-454.	8.8	78
15	Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 2018, 6, 52.	11.1	121
16	Signal Dynamics and Interactions during Flooding Stress. Plant Physiology, 2018, 176, 1106-1117.	4.8	196
17	A stress recovery signaling network for enhanced flooding tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6085-E6094.	7.1	140
18	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	7.3	146

RASHMI SASIDHARAN

#	Article	IF	CITATIONS
19	ACC deaminaseâ€producing rhizosphere bacteria modulate plant responses to flooding. Journal of Ecology, 2017, 105, 979-986.	4.0	51
20	Variation in Arabidopsis flooding responses identifies numerous putative "tolerance genes― Plant Signaling and Behavior, 2016, 11, e1249083.	2.4	5
21	Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiology, 2016, 172, pp.00725.2016.	4.8	54
22	Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiology, 2016, 172, pp.00472.2016.	4.8	92
23	The <i>Greening after Extended Darkness1</i> Is an N-End Rule Pathway Mutant with High Tolerance to Submergence and Starvation Â. Plant Physiology, 2015, 167, 1616-1629.	4.8	45
24	Ethylene-Mediated Acclimations to Flooding Stress. Plant Physiology, 2015, 169, 3-12.	4.8	325
25	Plant Life without Ethylene. Trends in Plant Science, 2015, 20, 783-786.	8.8	18
26	Plant responses to flooding. Frontiers in Plant Science, 2014, 5, 226.	3.6	34
27	Extreme flooding tolerance in <i>Rorippa</i> . Plant Signaling and Behavior, 2014, 9, e27847.	2.4	10
28	Group <scp>VII E</scp> thylene <scp>R</scp> esponse <scp>F</scp> actor diversification and regulation in four species from floodâ€prone environments. Plant, Cell and Environment, 2014, 37, 2421-2432.	5.7	58
29	Different Survival Strategies Amongst Plants to Cope with Underwater Conditions. Plant Cell Monographs, 2014, , 329-349.	0.4	6
30	Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. Plant Cell Monographs, 2014, , 165-184.	0.4	11
31	Interactions between Auxin, Microtubules and XTHs Mediate Green Shade- Induced Petiole Elongation in Arabidopsis. PLoS ONE, 2014, 9, e90587.	2.5	35
32	Root Transcript Profiling of Two <i>Rorippa</i> Species Reveals Gene Clusters Associated with Extreme Submergence Tolerance. Plant Physiology, 2013, 163, 1277-1292.	4.8	62
33	Two Rumex Species from Contrasting Hydrological Niches Regulate Flooding Tolerance through Distinct Mechanisms. Plant Cell, 2013, 25, 4691-4707.	6.6	133
34	Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biology, 2013, 15, 426-435.	3.8	202
35	Blueâ€lightâ€mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant Journal, 2011, 67, 208-217.	5.7	148
36	Molecular characterization of the submergence response of the <i>Arabidopsis thaliana</i> ecotype Columbia. New Phytologist, 2011, 190, 457-471.	7.3	184

RASHMI SASIDHARAN

#	Article	IF	CITATIONS
37	Cell Wall Modifying Proteins Mediate Plant Acclimatization to Biotic and Abiotic Stresses. Critical Reviews in Plant Sciences, 2011, 30, 548-562.	5.7	133
38	Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis. Plant Cell, 2011, 23, 4173-4183.	6.6	87
39	A kinetic analysis of hyponastic growth and petiole elongation upon ethylene exposure in Rumex palustris. Annals of Botany, 2010, 106, 429-435.	2.9	13
40	Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signaling and Behavior, 2010, 5, 655-662.	2.4	78
41	Cell wall modification involving XTHs controls phytochrome-mediated petiole elongation in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2010, 5, 1491-1492.	2.4	15
42	Light Quality-Mediated Petiole Elongation in Arabidopsis during Shade Avoidance Involves Cell Wall Modification by Xyloglucan Endotransglucosylase/Hydrolases À Â Â. Plant Physiology, 2010, 154, 978-990.	4.8	158
43	A molecular basis for the physiological variation in shade avoidance responses. Plant Signaling and Behavior, 2009, 4, 528-529.	2.4	5
44	Light quality controls shoot elongation through regulation of multiple hormones. Plant Signaling and Behavior, 2009, 4, 755-756.	2.4	14
45	Light and Shade Signals Regulate Four Phytochrome A Genes in Stellaria longipes. International Journal of Plant Sciences, 2009, 170, 164-173.	1.3	1
46	The Regulation of Cell Wall Extensibility during Shade Avoidance: A Study Using Two Contrasting Ecotypes of <i>Stellaria longipes</i> . Plant Physiology, 2008, 148, 1557-1569.	4.8	89
47	Growth Control by Ethylene: Adjusting Phenotypes to the Environment. Journal of Plant Growth Regulation, 2007, 26, 188-200.	5.1	108
48	The biology of Stellaria longipes (Caryophyllaceae). Canadian Journal of Botany, 2005, 83, 1367-1383.	1.1	21