
Rashmi Sasidharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethylene-Mediated Acclimations to Flooding Stress. Plant Physiology, 2015, 169, 3-12.	4.8	325
2	Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biology, 2013, 15, 426-435.	3.8	202
3	Signal Dynamics and Interactions during Flooding Stress. Plant Physiology, 2018, 176, 1106-1117.	4.8	196
4	Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 2019, 10, 4020.	12.8	195
5	Molecular characterization of the submergence response of the <i>Arabidopsis thaliana</i> ecotype Columbia. New Phytologist, 2011, 190, 457-471.	7.3	184
6	Light Quality-Mediated Petiole Elongation in Arabidopsis during Shade Avoidance Involves Cell Wall Modification by Xyloglucan Endotransglucosylase/Hydrolases À Â Â. Plant Physiology, 2010, 154, 978-990.	4.8	158
7	Blueâ€lightâ€mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant Journal, 2011, 67, 208-217.	5.7	148
8	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	7.3	146
9	A stress recovery signaling network for enhanced flooding tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6085-E6094.	7.1	140
10	Cell Wall Modifying Proteins Mediate Plant Acclimatization to Biotic and Abiotic Stresses. Critical Reviews in Plant Sciences, 2011, 30, 548-562.	5.7	133
11	Two Rumex Species from Contrasting Hydrological Niches Regulate Flooding Tolerance through Distinct Mechanisms. Plant Cell, 2013, 25, 4691-4707.	6.6	133
12	Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 2018, 6, 52.	11.1	121
13	Growth Control by Ethylene: Adjusting Phenotypes to the Environment. Journal of Plant Growth Regulation, 2007, 26, 188-200.	5.1	108
14	Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiology, 2016, 172, pp.00472.2016.	4.8	92
15	The Regulation of Cell Wall Extensibility during Shade Avoidance: A Study Using Two Contrasting Ecotypes of <i>Stellaria longipes</i> . Plant Physiology, 2008, 148, 1557-1569.	4.8	89
16	Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis. Plant Cell, 2011, 23, 4173-4183.	6.6	87
17	The role of ethylene in metabolic acclimations to low oxygen. New Phytologist, 2021, 229, 64-70.	7.3	81
18	Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signaling and Behavior, 2010, 5, 655-662.	2.4	78

2

RASHMI SASIDHARAN

#	Article	IF	CITATIONS
19	After The Deluge: Plant Revival Post-Flooding. Trends in Plant Science, 2019, 24, 443-454.	8.8	78
20	Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 2019, 10, 3540.	12.8	76
21	Root Transcript Profiling of Two <i>Rorippa</i> Species Reveals Gene Clusters Associated with Extreme Submergence Tolerance. Plant Physiology, 2013, 163, 1277-1292.	4.8	62
22	Age-Dependent Abiotic Stress Resilience in Plants. Trends in Plant Science, 2021, 26, 692-705.	8.8	60
23	Group <scp>VII E</scp> thylene <scp>R</scp> esponse <scp>F</scp> actor diversification and regulation in four species from floodâ€prone environments. Plant, Cell and Environment, 2014, 37, 2421-2432.	5.7	58
24	Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiology, 2016, 172, pp.00725.2016.	4.8	54
25	ACC deaminaseâ€producing rhizosphere bacteria modulate plant responses to flooding. Journal of Ecology, 2017, 105, 979-986.	4.0	51
26	The <i>Greening after Extended Darkness1</i> Is an N-End Rule Pathway Mutant with High Tolerance to Submergence and Starvation Â. Plant Physiology, 2015, 167, 1616-1629.	4.8	45
27	Interactions between Auxin, Microtubules and XTHs Mediate Green Shade- Induced Petiole Elongation in Arabidopsis. PLoS ONE, 2014, 9, e90587.	2.5	35
28	Plant responses to flooding. Frontiers in Plant Science, 2014, 5, 226.	3.6	34
29	Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiology, 2022, 190, 1365-1383.	4.8	30
30	Redox and low-oxygen stress: signal integration and interplay. Plant Physiology, 2021, 186, 66-78.	4.8	29
31	Keeping the shoot above water – submergence triggers antithetical growth responses in stems and petioles of watercress (<i>Nasturtium officinale</i>). New Phytologist, 2021, 229, 140-155.	7.3	25
32	Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology, 2022, 64, 412-430.	8.5	25
33	Shape shifting by amphibious plants in dynamic hydrological niches. New Phytologist, 2021, 229, 79-84.	7.3	24
34	The biology of Stellaria longipes (Caryophyllaceae). Canadian Journal of Botany, 2005, 83, 1367-1383.	1.1	21
35	Plant Life without Ethylene. Trends in Plant Science, 2015, 20, 783-786.	8.8	18
36	Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species. Plants, 2020, 9, 1022.	3.5	18

RASHMI SASIDHARAN

#	Article	IF	CITATIONS
37	Cell wall modification involving XTHs controls phytochrome-mediated petiole elongation in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2010, 5, 1491-1492.	2.4	15
38	Light quality controls shoot elongation through regulation of multiple hormones. Plant Signaling and Behavior, 2009, 4, 755-756.	2.4	14
39	A kinetic analysis of hyponastic growth and petiole elongation upon ethylene exposure in Rumex palustris. Annals of Botany, 2010, 106, 429-435.	2.9	13
40	Plant performance and food security in a wetter world. New Phytologist, 2021, 229, 5-7.	7.3	11
41	Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. Plant Cell Monographs, 2014, , 165-184.	0.4	11
42	Extreme flooding tolerance in <i>Rorippa</i> . Plant Signaling and Behavior, 2014, 9, e27847.	2.4	10
43	A high throughput method for quantifying number and size distribution of Arabidopsis seeds using large particle flow cytometry. Plant Methods, 2020, 16, 27.	4.3	7
44	Different Survival Strategies Amongst Plants to Cope with Underwater Conditions. Plant Cell Monographs, 2014, , 329-349.	0.4	6
45	Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 2022, 11, .	4.3	6
46	A molecular basis for the physiological variation in shade avoidance responses. Plant Signaling and Behavior, 2009, 4, 528-529.	2.4	5
47	Variation in Arabidopsis flooding responses identifies numerous putative "tolerance genes― Plant Signaling and Behavior, 2016, 11, e1249083.	2.4	5
48	Light and Shade Signals Regulate Four Phytochrome A Genes in Stellaria longipes. International	1.3	1

48 Journal of Plant Sciences, 2009, 170, 164-173.