List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717057/publications.pdf Version: 2024-02-01

	71102	110387
5,041	41	64
citations	h-index	g-index
123	123	3995
docs citations	times ranked	citing authors
	citations 123	5,04141citationsh-index123123

FANC 7HU

#	Article	IF	CITATIONS
1	MOF-74/polystyrene-derived Ni-doped hierarchical porous carbon for structure-oriented extraction of polycyclic aromatic hydrocarbons and their metabolites from human biofluids. Journal of Hazardous Materials, 2022, 424, 127465.	12.4	22
2	PDMS-coated γCD-MOF solid-phase microextraction fiber for BTEX analysis with boosted performances. Analytica Chimica Acta, 2022, 1189, 339259.	5.4	3
3	Novel solidâ€phase microextraction fiber coatings: A review. Journal of Separation Science, 2022, 45, 282-304.	2.5	40
4	An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
5	Efficient solid phase microextraction of organic pollutants based on graphene oxide/chitosan aerogel. Analytica Chimica Acta, 2022, 1195, 339462.	5.4	32
6	Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nature Communications, 2022, 13, 951.	12.8	57
7	Recent advances in sampling and sample preparation for effect-directed environmental analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116654.	11.4	10
8	Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
9	Facile Synthesis of a Fluorinatedâ€Squaramide Covalent Organic Framework for the Highly Efficient and Broadâ€Spectrum Removal of Per―and Polyfluoroalkyl Pollutants. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
10	From exogenous to endogenous: Advances in in vivo sampling in living systems. TrAC - Trends in Analytical Chemistry, 2022, 156, 116692.	11.4	6
11	InÂvivo tracing of endogenous salicylic acids as the biomarkers for evaluating the toxicity of nano-TiO2 to plants. Analytica Chimica Acta, 2021, 1145, 79-86.	5.4	2
12	Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends in Analytical Chemistry, 2021, 136, 116182.	11.4	47
13	Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	80
14	Polymer Ligand-Sensitized Lanthanide Metal–Organic Frameworks for an On-Site Analysis of a Radionuclide. Analytical Chemistry, 2021, 93, 9226-9234.	6.5	16
15	Protein-directed, hydrogen-bonded biohybrid framework. CheM, 2021, 7, 2722-2742.	11.7	83
16	A Biocatalytic Cascade in an Ultrastable Mesoporous Hydrogenâ€Bonded Organic Framework for Pointâ€ofâ€Care Biosensing. Angewandte Chemie - International Edition, 2021, 60, 23608-23613.	13.8	71
17	Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples. TrAC - Trends in Analytical Chemistry, 2021, 142, 116318.	11.4	33
18	A Biocatalytic Cascade in an Ultrastable Mesoporous Hydrogenâ€Bonded Organic Framework for Pointâ€ofâ€Care Biosensing. Angewandte Chemie, 2021, 133, 23800-23805.	2.0	15

#	Article	IF	CITATIONS
19	Ratiometric fluorescent probe for the on-site monitoring of coexisted Hg2+ and Fâ^' in sequence. Analytica Chimica Acta, 2021, 1183, 338967.	5.4	8
20	Stress symptoms and plant hormone-modulated defense response induced by the uptake of carbamazepine and ibuprofen in Malabar spinach (Basella alba L.). Science of the Total Environment, 2021, 793, 148628.	8.0	11
21	Hydrogen-Bonded Biohybrid Framework-Derived Highly Specific Nanozymes for Biomarker Sensing. Analytical Chemistry, 2021, 93, 13981-13989.	6.5	31
22	A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions. Proceedings of the United States of America, 2021, 118, .	7.1	37
23	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie, 2020, 132, 2889-2896.	2.0	25
24	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie - International Edition, 2020, 59, 2867-2874.	13.8	190
25	The effect of different binders on the comprehensive performance of solid phase microextraction fiber. Analytica Chimica Acta, 2020, 1140, 50-59.	5.4	16
26	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	6.5	38
27	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie - International Edition, 2020, 59, 13947-13954.	13.8	86
28	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie, 2020, 132, 14051-14058.	2.0	19
29	In vivo monitoring and exposure potency assessment of phase I metabolism of fenthion in vegetables. Journal of Hazardous Materials, 2020, 399, 123013.	12.4	8
30	Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection. Biosensors and Bioelectronics, 2020, 156, 112095.	10.1	92
31	Determination of the mass transfer coefficients in direct immersion solidâ€phase microextraction. Journal of Separation Science, 2020, 43, 1847-1853.	2.5	7
32	Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta, 2020, 211, 120706.	5.5	13
33	Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation. Chemical Communications, 2020, 56, 5476-5479.	4.1	4
34	Sheathed in situ heteroepitaxial growth metal-organic framework probe for detection of polycyclic aromatic hydrocarbons in river water and living fish. Science of the Total Environment, 2020, 729, 138971.	8.0	20
35	Energy-efficient construction of thermally stable superhydrophobic nanoscale stacked lamellae based solid-phase microextraction coating for the determination of non-polar compounds. Analytica Chimica Acta, 2019, 1092, 17-23.	5.4	6
36	Uptake of pharmaceuticals acts as an abiotic stress and triggers variation of jasmonates in Malabar spinach (Basella alba. L). Chemosphere, 2019, 236, 124711.	8.2	7

#	Article	IF	CITATIONS
37	Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Analytica Chimica Acta, 2019, 1077, 67-86.	5.4	83
38	Boosting loading capacities of shapeable metal–organic framework coatings by closing the interparticle spaces of stacked nanocrystals. Chemical Communications, 2019, 55, 7223-7226.	4.1	11
39	<i>In Vivo</i> Sampling: A Promising Technique for Detecting and Profiling Endogenous Substances in Living Systems. Journal of Agricultural and Food Chemistry, 2019, 67, 2120-2126.	5.2	18
40	Recent development in sample preparation techniques for plant hormone analysis. TrAC - Trends in Analytical Chemistry, 2019, 113, 224-233.	11.4	39
41	Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite. Analytica Chimica Acta, 2019, 1054, 17-25.	5.4	14
42	Development of an on–site detection approach for rapid and highly sensitive determination of persistent organic pollutants in real aquatic environment. Analytica Chimica Acta, 2019, 1050, 88-94.	5.4	21
43	Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy. Analytica Chimica Acta, 2019, 1047, 1-8.	5.4	25
44	A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples. Talanta, 2019, 195, 290-297.	5.5	12
45	Development of a novel solid phase microextraction calibration method for semi-solid tissue sampling. Science of the Total Environment, 2019, 655, 174-180.	8.0	6
46	Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna. Journal of Hazardous Materials, 2019, 364, 531-536.	12.4	84
47	A Convenient and Versatile Aminoâ€Acidâ€Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1463-1467.	13.8	231
48	A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols. Analytica Chimica Acta, 2018, 1015, 20-26.	5.4	49
49	Hollow carbon nanospheres with high surface areas for fast, broad-spectrum and sensitive adsorption of pollutants. Nanoscale, 2018, 10, 5725-5730.	5.6	27
50	Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Analytical and Bioanalytical Chemistry, 2018, 410, 3991-4014.	3.7	93
51	Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency <i>cis</i> -Diol Biomolecule Detection. Analytical Chemistry, 2018, 90, 3387-3394.	6.5	21
52	Quantifying nanoplastic-bound chemicals accumulated in <i>Daphnia magna</i> with a passive dosing method. Environmental Science: Nano, 2018, 5, 776-781.	4.3	35
53	Improving the Sensitivity of Solid-Phase Microextraction by Reducing the Volume of Off-Line Elution Solvent. Analytical Chemistry, 2018, 90, 1572-1577.	6.5	6
54	Fabrication of powdery polymer aerogel as the stationary phase for high-resolution gas chromatographic separation. Talanta, 2018, 186, 445-451.	5.5	4

#	Article	IF	CITATIONS
55	Determination of four salicylic acids in aloe by in vivo solid phase microextraction coupling with liquid chromatography-photodiode array detection. Talanta, 2018, 184, 520-526.	5.5	24
56	Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish. Environmental Science & Technology, 2018, 52, 145-151.	10.0	31
57	A Convenient and Versatile Amino Acidâ€Boosted Biomimetic Strategy for Nondestructive Encapsulation of Biomacromolecules within Metalâ^'Organic Framework. Angewandte Chemie, 2018, 131, 1477.	2.0	21
58	Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. TrAC - Trends in Analytical Chemistry, 2018, 108, 135-153.	11.4	131
59	Efficient and Versatile Pipet Microextraction Device Based on a Light-Heatable Sorbent. Analytical Chemistry, 2018, 90, 8304-8308.	6.5	5
60	Allochroicâ€Graphene Oxide Linked 3D Oriented Surface Imprinting Strategy for Glycoproteins Assays. Advanced Functional Materials, 2018, 28, 1804129.	14.9	31
61	Ultrathin Self-Assembled Diphenylalanine Nanosheets through a Gold-Stabilized Strategy for High-Efficiency Adsorption/Desorption/Ionization. Analytical Chemistry, 2018, 90, 8607-8615.	6.5	12
62	Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization. Talanta, 2017, 172, 155-161.	5.5	15
63	Rapid detection of five anesthetics in tilapias by in vivo solid phase microextraction coupling with gas chromatography-mass spectrometry. Talanta, 2017, 168, 263-268.	5.5	28
64	Enhanced Photocatalytic Degradation of Environmental Pollutants under Visible Irradiation by a Composite Coating. Environmental Science & Technology, 2017, 51, 5137-5145.	10.0	63
65	Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. Analytica Chimica Acta, 2017, 971, 48-54.	5.4	55
66	In Situ Hydrothermally Grown TiO ₂ @C Core–Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS Applied Materials & Interfaces, 2017, 9, 1840-1846.	8.0	50
67	Applications of In Vivo and In Vitro Solid-Phase Microextraction Techniques in Plant Analysis. , 2017, , 247-285.		0
68	A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency. Analytica Chimica Acta, 2017, 987, 38-46.	5.4	35
69	Boronic Acid Decorated Defective Metal–Organic Framework Nanoreactors for Highâ€Efficiency Carbohydrates Separation and Labeling. Advanced Functional Materials, 2017, 27, 1702126.	14.9	42
70	Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples. Analytical and Bioanalytical Chemistry, 2017, 409, 5239-5247.	3.7	32
71	Rapid Determination of Clenbuterol in Pork by Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography–Mass Spectrometry. Journal of Chromatographic Science, 2016, 54, bmv126.	1.4	16
72	Hierarchical Graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta, 2016, 160, 217-224.	5.5	42

#	Article	IF	CITATIONS
73	Evaluation of the availability of bound analyte for passive sampling in the presence of mobile binding matrix. Analytica Chimica Acta, 2016, 917, 19-26.	5.4	5
74	Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish. Analytical Chemistry, 2016, 88, 5841-5848.	6.5	52
75	In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.). Journal of Hazardous Materials, 2016, 316, 52-59.	12.4	53
76	Application of in vivo solid-phase microextraction in environmental analysis. TrAC - Trends in Analytical Chemistry, 2016, 85, 26-35.	11.4	73
77	Application of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Chemical Communications, 2016, 52, 6829-6832.	4.1	48
78	Study on the Diffusion-Dominated Solid-Phase Microextraction Kinetics in Semisolid Sample Matrix. Analytical Chemistry, 2016, 88, 8921-8925.	6.5	15
79	Boronate Affinity–Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring. Chemistry - an Asian Journal, 2016, 11, 2240-2245.	3.3	17
80	Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants. Journal of Chromatography A, 2016, 1450, 9-16.	3.7	31
81	Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable. Journal of Chromatography A, 2016, 1455, 20-27.	3.7	25
82	Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction. Analytica Chimica Acta, 2016, 933, 117-123.	5.4	25
83	Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection. Journal of Chromatography A, 2016, 1437, 25-36.	3.7	41
84	In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and aloe (Barbadensis). Science of the Total Environment, 2016, 550, 1134-1140.	8.0	29
85	Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization. Journal of Chromatography A, 2016, 1427, 22-28.	3.7	19
86	A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chemical Science, 2016, 7, 1487-1495.	7.4	63
87	Preparation and evaluation of amino modified graphene solid-phase microextraction fiber and its application to the determination of synthetic musks in water samples. Journal of Chromatography A, 2016, 1429, 1-7.	3.7	32
88	Hollow fiber based liquid phase microextraction for the determination of organochlorine pesticides in ecological textiles by gas chromatography–mass spectrometry. Talanta, 2016, 146, 375-380.	5.5	43
89	Carbon Nanotubes Act as Contaminant Carriers and Translocate within Plants. Scientific Reports, 2015, 5, 15682.	3.3	52
90	Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique. Environmental Pollution, 2015, 200, 149-158.	7.5	46

#	Article	IF	CITATIONS
91	Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Analytica Chimica Acta, 2015, 884, 44-51.	5.4	26
92	Investigation of the kinetic process of solid phase microextraction in complex sample. Analytica Chimica Acta, 2015, 900, 111-116.	5.4	12
93	Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography–mass spectrometry. Talanta, 2015, 136, 198-203.	5.5	25
94	Environmental fates of synthetic musks in animal and plant: An in vivo study. Chemosphere, 2015, 138, 584-591.	8.2	36
95	Study of complex matrix effect on solid phase microextraction for biological sample analysis. Journal of Chromatography A, 2015, 1411, 34-40.	3.7	18
96	Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample. Journal of Chromatography A, 2015, 1406, 27-33.	3.7	11
97	Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre. Nanoscale, 2015, 7, 11720-11726.	5.6	28
98	Preparation of C18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Analytica Chimica Acta, 2015, 873, 57-62.	5.4	38
99	Bioinspired Polydopamine Sheathed Nanofibers for High-Efficient in Vivo Solid-Phase Microextraction of Pharmaceuticals in Fish Muscle. Analytical Chemistry, 2015, 87, 3453-3459.	6.5	58
100	Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Analytica Chimica Acta, 2015, 878, 109-117.	5.4	73
101	Automated hollow-fiber liquid-phase microextraction coupled with liquid chromatography/tandem mass spectrometry for the analysis of aflatoxin M1 in milk. Journal of Chromatography A, 2015, 1416, 137-140.	3.7	35
102	Polyelectrolyte Microcapsules Dispersed in Silicone Rubber for in Vivo Sampling in Fish Brains. Analytical Chemistry, 2015, 87, 10593-10599.	6.5	24
103	The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles. Nanoscale, 2015, 7, 16943-16951.	5.6	84
104	Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta, 2015, 853, 303-310.	5.4	142
105	Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China. Marine Pollution Bulletin, 2014, 83, 358-365.	5.0	91
106	Determination of polycyclic aromatic hydrocarbons in leather products using solid-phase microextraction coupled with gas chromatography–mass spectrometry. Microchemical Journal, 2014, 112, 159-163.	4.5	13
107	Disposable solid-phase microextraction fiber coupled with gas chromatography-mass spectrometry for complex matrix analysis. Analytical Methods, 2014, 6, 4895-4900.	2.7	28
108	Comparison of fully-automated headspace single drop microextraction and headspace solid phase microextraction techniques for rapid analysis of No. 6 solvent residues in edible oil. Microchemical Journal, 2014, 117, 187-193.	4.5	17

#	Article	IF	CITATIONS
109	<i>In Vivo</i> Tracing Uptake and Elimination of Organic Pesticides in Fish Muscle. Environmental Science & amp; Technology, 2014, 48, 8012-8020.	10.0	52
110	In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Analytica Chimica Acta, 2014, 829, 22-27.	5.4	80
111	Determination of organochlorine pesticides in textiles using solid-phase microextraction with gas chromatography–mass spectrometry. Microchemical Journal, 2013, 110, 280-284.	4.5	32
112	Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Analytica Chimica Acta, 2013, 794, 1-14.	5.4	90
113	New materials in solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2013, 47, 68-83.	11.4	196
114	Application of nanomaterials in sample preparation. Journal of Chromatography A, 2013, 1300, 2-16.	3.7	186
115	Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination. Journal of Chromatography A, 2013, 1300, 187-192.	3.7	87
116	Determination of organophosphorus pesticides in ecological textiles by solid-phase microextraction with a siloxane-modified polyurethane acrylic resin fiber. Analytica Chimica Acta, 2012, 736, 62-68.	5.4	16
117	Preparation and characterization of vinyl-functionalized mesoporous organosilica-coated solid-phase microextraction fiber. Journal of Chromatography A, 2012, 1247, 42-48.	3.7	40
118	Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers. Journal of Chromatography A, 2010, 1217, 7848-7854.	3.7	61
119	Application of solid-phase microextraction for the determination of organophosphorus pesticides in textiles by gas chromatography with mass spectrometry. Analytica Chimica Acta, 2009, 650, 202-206.	5.4	50
120	Carbon nanotube-coated solid-phase microextraction metal fiber based on sol–gel technique. Journal of Chromatography A, 2009, 1216, 4641-4647.	3.7	111
121	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data, 2008, 53, 1186-1191.	1.9	15
122	Facile Synthesis of a Fluorinated‣quaramide Covalent Organic Framework for the Highly Efficient and Board‣pectrum Removal of Per―and Polyfluoroalkyl Substances. Angewandte Chemie, 0, , .	2.0	2